M.Sc., Chemistry Syllabus (TANSCHE)

2023 - 2024

PG & Research Department of Chemistry Bishop Heber College (Autonomous) Tiruchirappalli -620 017

CONTENTS

1.		Preamble
2.		Structure of Course
3.		Learning and Teaching Activities
4.		Tutorial Activities
5.		Laboratory Activities
6.		Field Study Activities
7.		Assessment Activities
	7.1	Assessment principles
	7.2	Assessment Details
8.		Teaching methodologies
9.		Faculty Course File
10.		Template for PG Programme in Chemistry
11.		Template for Semester
12.		Instructions for Course Transaction
13.		Testing Pattern
14.		Different Types of Courses
15.		Elective Courses (ED from other Department Experts)
16.		Skill Development Courses
17.		Institution-Industry-Interaction
18.		Model Syllabus
	 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 	2. 3. 4. 5. 6. 7. 7.1 7.2 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.

	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM MEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Chemistry
Programme Code	
Duration	PG – 2YEARS
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	 Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-
	making. PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership SkillCapability to lead themselves and the team to achieve organizational goals.PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.
Programme Specific Outcomes (PSOs)	PSO1 – Placement To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur
To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate starture and high potential encouring tions
facilitate startups and high potential organizations.
PSO3 – Research and Development
Design and implement HR systems and practices grounded in research
that comply with employment laws, leading the organization towards
growth and development.
PSO4 – Contribution to Business World
To produce employable, ethical and innovative professionals to sustain
in the dynamic business world.
PSO 5 – Contribution to the Society
To contribute to the development of the society by collaborating with
stakeholders for mutual benefit.

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credit
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VII	4	4.1. Core-X	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-VII	4	4.2 Core-XI	4
1.3 Core – III	4	2.3 Core – VI	4	3.3 Core – IX	4	4.3 Core – XII	4
1.4 Elective (Generic / Discipline Centric)- I	3	2.4 Elective (Generic / Discipline Centric) – III	3	3.4 Elective (Generic / Discipline Centric) – V	3	4.4 Elective (Generic / Discipline Centric) – VI	3
1.5 Elective (Generic / Discipline Centric)-II	3	2.5 Elective (Generic / Discipline Centric)-IV	3	3.5 Core Industry Module	3	4.5 Project with Viva-Voce	3
1.6Ability Enhancement Course- Soft Skill -1	2	2.6 Ability Enhancement Course - Soft Skill -2	2	3.6 Ability Enhancement Course- Soft Skill -3	2	4.6 Ability Enhancement Course- Soft Skill -4	2
Skill Enhancement Course SEC 1	2	2.7 Skill Enhancement Course SEC 2	2	3.7 Skill Enhancement Course – Term Paper and Seminar Presentation SEC 3 3.8 Internship/	2	 4.7 Skill Enhancement Course - Professional Competency Skill 4.8 Extension 	2
				Industrial Activity		4.8 Extension Activity	-
	22		22		24		23
					Т	otal Credit Points	91

Core- Papers	12	2 x	4	=	48
Elective (Generic / Discipline Centric)) 8	х	3	=	24
Ability Enhancement Course- Soft Skil	II - 8	х	2	=	16
Internship/ Industrial Activity	1	х	2	=	2
Extension Activity	1	x	1	=	1
Total Credits					91

Component wise Credit Distribution

Credits	Sem	Sem II	Sem	Sem	Total
	Ι		III	IV	
Part A	18	18	18	18	72
Part B					
(i) Discipline – Centric / Generic	2	2	2	2	8
Skill					
(ii) Soft Skill	2	2	2	2	
(iii) Summer Internship /			2		10
Industrial					
Training					
Part C				1	1
Total	22	22	24	23	91

Part A component and Part B (i) will be taken into account for CGPA calculation for the postgraduate programme and the other components Part B and Part C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree

2. Structure of Course

Course Code	Cour	Course Name		
Lecture Hours: (L)	Tutorial Hours :	Lab Practice		Total: (L+T+P)
per week	(T) per week	Hours: (P)per	week	per week
Course Category :	Year & Semester:		Admis	sion Year:
Pre-requisite				
Links to other Cours	es			
Learning Objectives	: (for teachers: what they have	to do in the class/	lab/fie	ld)
Course Outcomes: (f	or students: To know what the	y are going to learn	n)	
CO1:				
CO2:				
CO3:				
CO4:				
CO5:				
Recap: (not for exami	nation) Motivation/previous le	ecture/ relevant po	ortions	required for the
course) [This is done	during 2 Tutorial hours)			
Units	Contents			Required Hours
I				15

II		15
III		15
IV		15
V		15
Extended Professional	Questions related to the above topics, from various	
Component (is a part	competitive examinations UPSC / TRB / NET /	
ofinternal component	UGC –	
only, Not to	CSIR / GATE / TNPSC / others to	
	be solved(To be discussed during the	
	Tutorial hour)	

be includedin					
the					
External Examination					
question					
paper)					
Skills acquired from the	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional				
course	Communication and Transferrable Skill				
Learning Resources:					
Recommende	d Texts				
Reference Books					
Web resources					
Board of Studies Date	•				

3. Learning and Teaching Activities

3.1 Topic wise Delivery method

Hour Count	Торіс	Unit	Mode of Delivery

3.2 Work Load

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

7

Activity	Quantity	Workload periods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
Cycle Test or similar	2	4
Model Test or similar	1	3
University Exam	1	3
	Total	90 periods

Tutorial Activities

Tutorial Count	Торіс

4. Laboratory Activities

5. Field Study Activities

6. Assessment Activities

6.1 Assessment Principles:

Assessment for this course is based on the following principles

- 1. Assessment must encourage and reinforce learning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessment must enable robust and fair judgments about student performance.
- 4. Assessment practice must be fair and equitable to students and give them the opportunity demonstrate what they learned.
- 5. Assessment must maintain academic standards.

6.2 Assessment Details:

Assessment Item	Distributed Due Date	Weightage	Cumulative Weightage
Assignment 1	3 rd week	2%	2%
Assignment 2	6 th Week	2%	4%

Cycle Test – I	7 th Week	6%	10%
Assignment 3	8 th Week	2%	12%
Assignment 4	11 th Week	2%	14%
Cycle Test – II	12 th Week	6%	20%
Assignment 5	14 th Week	2%	22%
Model Exam	15 th Week	13%	35%
Attendance	All weeks as per the	5%	40%
	Academic Calendar		
University Exam	17 th Week	60%	100%

a. Academic Schedule

CONTENTS

- b. Students Name List
- c. Time Table
- d. Syllabus
- e. Lesson Plan
- f. Staff Workload

- g. Course Design(content, Course Outcomes(COs), Delivery method, mapping of COs with Programme Outcomes(POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)
- h. Sample CO Assessment Tools.
- i. Faculty Course Assessment Report(FCAR)
- j. Course Evaluation Sheet
- k. Teaching Materials(PPT, OHP etc)
- l. Lecture Notes
- m. Home Assignment Questions
- n. Tutorial Sheets
- o. Remedial Class Record, if any.
- p. Projects related to the Course
- q. Laboratory Experiments related to the Courses
- r. Internal Question Paper
- s. External Question Paper
- t. Sample Home Assignment Answer Sheets
- u. Three best, three middle level and three average Answersheets
- v. Result Analysis (CO wise and whole class)
- w. Question Bank for Higher studies Preparation (GATE/Placement)
- x. List of mentees and their academic achievements

Syllabus – M. Sc., Chemistry (2023-2025) SEMESTER-WISE DISTRIBUTION OF HOURS AND CREDITS

Semester	COURSE	COURSE CODE	COURSE TITLE	HOURS	CREDIT		Marks 100	
	CC1 Theorem	P23CH101	Organic Reaction Mechanism-I	7	5	CIA 25	UE 75	Total 100
	CC1-Theory	P23CH102				25	75	100
	CC2 - Theory	P23CH1P1	Structure and Bonding in Inorganic Compounds	7	5	40	60	100
	CC3 Practical	P23CH1:A	Organic Chemistry Practical Bio-Inorganic Chemistry	6	4	25	75	100
I	Elective- I Theory	P23CH1:B	Nanomaterials and Nanotechnology	5	3	25	75	100
	Elective- II	P23CH1:C	Molecular Spectroscopy			25	75	100
	Theory	P23CH1:D	Medicinal Chemistry	5	3	25	75	100
				30	20			
	CC4- Theory	P23CH203	Organic Reaction Mechanism-II	6	5	25	75	100
	CC5- Theory	P23CH204	Physical Chemistry-I	6	5	25	75	100
	CC6 - Practical	P23CH2P2	Inorganic Chemistry Practical	6	4	40	60	100
		P23CH2:A	Electrochemistry			25	75	100
п	Elective- III Theory	P23CH2:B	Green Chemistry	4	3	25	75	100
	Elective – IV	P23CH2:C	Organic Spectroscopy		2	25	75	100
	Theory	P23CH2: D	Material Science	4	3	25	75	100
	NMEC-I Theory	P23CH2E1	Chemistry for Healthy Living	4	2	25	75	100
	Theory			30	22			
	Core -7- Theory	P23CH305	Organic Synthesis and Photochemistry	6	5	25	75	100
	Core -8- Theory	P23CH306	Coordination Chemistry-I	6	5	25	75	100
	Core – 9	P23CH3P3	Physical Chemistry Practical	6	5	40	60	100
	Practical Core–10 Practical	P23CH3P4	Analytical Instrumentation Technique - Practical	6	4	40	60	100
ш	Elective – V	P23CH3:A	Biomolecules and Heterocyclic Compounds		_	25	75	100
	Theory	P23CH3:B	Pharmacognosy & Phytochemistry	3	3	25	75	100
	NMEC-II Theory	P23CH3E2	Cosmetic Chemistry	3	2	25	75	100
	Internship	P23CH3I1	Internship / Industrial Activity(Summer Vacation Activity)	-	2	Internal Assessment (Report submission) CIA - 100		
			1	30	26		CIA - 100	
	Core-11 Theory	P23CH407	Coordination Chemistry-II	6	5	25	75	100
	Core -12 Theory	P23CH408	Physical Chemistry-II	6	5	25	75	100
	Core - 13 Project	P23CH4PJ	Project with Viva-Voce	8	7	25	75	100
	Elective – VI	P23CH4:P	Computational Chemistry Practical			40	60	100
	Practical	P23CH4:B	Polymer Chemistry	4	3	25	75	100
IV	SEC -3 (Professional	P23CH4SA	Course Training for Competitive Examination			Inte	rnal Assessn	ient
	Competency Course)	P23CH4SB	Chemistry for Advanced Research Studies	- 4	2	CIA – 100		
	VLO	P23VLO41/ P23VLO42	Value and Life Oriented Education	2	2*	CIA – 100 *(Extra Credit) Performance Based Assessment CIA - 100		
	Extension Activity	P23ETA41	Extension Activity	-	1			
				30	25			
			TOTAL CREDITS	120	91 + 2*			

Elective Courses

Courses are grouped (Group A to Group F) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components (IC) like pharmaceutical industries, Polymer labs courses for flexibility of choice by the stakeholders / institutions.

Semester I: Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PC/AC/IC)

- 1. Organic Chemistry
- 2. Nanomaterials and Nanotechnology

Group B:(PC/AC/IC)

- 1. Molecular Spectroscopy
- 2. Medicinal Chemistry

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen

from Group DGroup C:(PC/AC/IC)

- 1. Electrochemistry
- 2. Green Chemistry

Group D :(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from Group E.

Group E: (PC/AC/IC)

- 1. Biomolecules and Heterocyclic compounds
- 2. Pharmacognosy and Phytochemistry

Semester IV: Elective VI

Elective VI to be chosen from Group F.

Group F:(PC/AC/IC)

- 1. Computational Chemistry Practical
- 2. Polymer Chemistry

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders / institutions.

Group G (Skill Enhancement Courses) SEC:(Practical based paper)

- Computational Chemistry
- ➢ 3D printing in Chemistry
- Preparation of Consumer products
- Chemistry in everyday life
- Cosmetic Chemistry
- > Origin lab
- Industrial Chemistry
- Research Tools and Techniques

Ability Enhancement Courses

Soft Skill courses

Extra Disciplinary Courses for other Departments (not for Mathematics students)

Students from other Departments may also choose any one of the following as Extra DisciplinaryCourse.

ED-I: Chemistry for Life Sciences

ED-II: Chemical conservation

ED-III: Chemistry in food preservation

- ED-IV: Chemistry for Social studies
- ED-V: Chemistry in consumer products

7. Instructions for Course Transaction

Courses	Lecture	Tutorial	Lab Practice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
Lab Practice Courses	-	15	75	90
Project	20		70	90

8. Testing Pattern -- (25+75)

Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be twotests in Theory part and two tests in Laboratory part. Choose one best from Theory part and otherbest from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no improvement for CIA of both theory and laboratory, and, also for University EndSemester Examination.

Different Types of Courses

(i) Core Courses (Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

(ii) Elective Courses (ED within the Department Experts) (Illustrative)

- 1. Organic Spectroscopy
- 2. Nanomaterials and Nanotechnology
- 3. Molecular Spectroscopy
- 4. Medicinal Chemistry
- 5. Electrochemistry
- 6. Green Chemistry
- 7. Bio inorganic Chemistry
- 8. Material Science
- 9. Biomolecules and Heterocyclic compounds

- 10. Pharmacognosy and Phytochemistry
- 11. Computational Chemistry Practical
- 12. Polymer chemistry
- (iii) Elective Courses (ED from other Department Experts)

(iv) Skill Development Courses

(v) Institution-Industry-Interaction (Industry aligned Courses)
Programmes /course work/ field study/ Modelling the Industry Problem/
Statistical Analysis /Commerce-Industry related problems / MoU with
Industry and the like activities.

(vi) Elective Courses (Offered to Non – Major Students)

- 1. Chemistry for Healthy Living
- 2. Cosmetic Chemistry
- (vii) Professional Competency Courses
 - 1. Course Training for Competitive Examinations
 - 2. Chemistry for Advanced Research Studies
- (viii) Value and Life Oriented Education

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION M.Sc. Programme **Programme Code** Duration 2 years for PG Programme PO1: Problem Solving Skill Apply knowledge of Management theories and Human Resource **Outcomes (POs)** practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decisionmaking. **PO3: Ethical Value** Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities. **PO4: Communication Skill** Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill

Capability to lead themselves and the team to achieve organizational goals.

PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.

Equip with skins and competencies to become an entrepreneur.

PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.

PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO 10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.ProgrammePSO1 – PlacementSpecific Outcomes
(PSOs)To prepare the students who will demonstrate respectful engagement
with others' ideas, behaviors, beliefs and apply diverse frames of
reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development
Design and implement HR systems and practices grounded in research
that comply with employment laws, leading the organization towards growth and development.
PSO4 – Contribution to Business World
To produce employable, ethical and innovative professionals to sustain
in the dynamic business world.
PSO 5 – Contribution to the Society
To contribute to the development of the society by collaborating with
stakeholders for mutual benefit.

Title of the	ORGANIC REACTION MECHANISM - I							
Course	Carra Darra							
Paper No.	Core Pape		т	0 14			D22CU101	
Category	Core	Year	I	Credits	5	Course	P23CH101	
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lab Practice Total					
hours per	5	2	- 7					
week			Ļ					
Prerequisites		epts of organic						
Objectives of		tand the feasib	oility	and the m	echan	nism of varie	ous organic	
the course	reactions.						a i	
	-	ehend the te	chniq	ues in the	e det	ermination	of reaction	
	mechanism			C 1	•			
		tand the conc	ept o	of stereoch	emisti	ry involved	in organic	
	compounds		.1	1.00	•	1 1 1	• ,	
		e and appreciat			s invo	ived in the v	arious types	
	-	reaction mecha			h th	nronoratio	n of organia	
	compounds	•	inetic	Toules Id	JI UI	e preparatio	on of organic	
Course	1		tormi	ination of]	Ponct	ion Machan	ism: Reaction	
Outline							and non-classical	
Outime							state, Reaction	
		-					its of reactions:	
		postulate. Me	•			-		
		-				-	iates-isolation,	
		-	•				belling, isotope	
				-		-	tion of rate and	
		. Effect of stru						
					•		nt and reaction	
	constants.	energy relation	nomp	, pur fui fui	0 1000	or, substitue		
		Aromatic	and	Alinhatic	El	ectrophilic	Substitution:	
							l, heterocyclic	
							on: Orientation	
	-				-		robenzene and	
							iles: nitration,	
							: sulphonation;	
						-	n electrophiles:	
	0	1					ons. Aliphatic	
							Mechanism and	
	evidences.					,		
		Aromatic and	Alin	hatic Nucl	eophi	lic Substitut	tion: Aromatic	
							and Benzyne	
	-						ving group and	
				•			r-nucleophiles,	
	-	-			-	-	et- Hauser and	
							and evidences.	
		-		-			phatic trigonal	
	Anphatic I	incleopinite su	JSLILU	nons at all	anyn	c carbon, all	phane ingonal	

	carbon and vinyl carbon. S_N1 , S_N2 , S_Ni , and S_E1 mechanism and evidences,				
	Swain- Scott, Grunwald-Winstein relationship - Ambident nucleophiles.				
	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and				
	chirality - axis, plane, center, alternating axis of symmetry. Optical				
	isomerism due to asymmetric and dissymmetric molecules with C, N, S				
	based chiral centers. Optical purity, prochirality, enantiotopic and				
	diastereotopic atoms, groups, faces, axial and planar chirality, chirality due				
	to helical shape, methods of determining theconfiguration. Racemic				
	modifications: Racemization by thermal, anion, cation, reversible formation,				
	epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-				
	notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules,				
	absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic				
	compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and				
	prostereoisomerism, chiral shift reagents and chiral solvating reagents.				
	Criteria for optical purity: Resolution of racemic modifications, asymmetric				
	transformations, asymmetric synthesis, destruction. Stereoselective and				
	stereospecific synthesis.				
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic				
	systems, intramolecular rearrangements, neighbouring group participation,				
	chemical consequence of conformational equilibrium - Curtin-Hammett				
	Principle. Stability of five and six-membered rings: mono-, di- and				
	polysubstituted cyclohexanes, conformation and reactivity in cyclohexa				
	systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and				
	Brett's rule. Optical rotation and optical rotatory dispersion, conformational				
	asymmetry, ORD curves, octant rule, configuration and conformation,				
	Cotton effect, axial haloketone rule and determination of configuration.				
Extended	Questions related to the above topics, from various competitive				
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to				
Component (is	be solved (To be discussed during the Tutorial hours)				
a part of internal	(To be discussed during the Tutorial hours)				
component					
only, Not to be					
included in the					
external					
examination					
question paper)					
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,				
from this	Professional Communication and Transferable skills.				
course					
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition,				
Text	John-Wiley and Sons.2001.				
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,				
	Rinehart and Winston Inc., 1959.				
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New				
	Age International Publishers, 2015.				
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.				
	 J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014. 				
	Ox1010 University F1088, 2014.				

Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill,
	2000.
	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson Education
	Asia, 2004.
Website and	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u>
e-learning	chemistry/organic
source	2. https://www.organic-chemistry.org/
A I I	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	M	S	S	Μ	S	Μ	S	S
Strong -	3		<u> </u>		Med	lium-2	<u> </u>	l	L	ow-1

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

3 – Strong, 2 – Medium, 1 - Low

	Methods of Evaluation					
	Continuous Internal Assessment Test					
Internal	Assignments	25 Marks				
Evaluation	Seminars	25 Warks				
	Attendance and Class Participation					
External Evaluation	End Semester Examination	75 Marks				
	Total	100 Marks				
	Methods of Assessment					
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions.					
Understand/	MCO True/Felse Short assays Concept explanations, short summary or					
Comprehend	MCQ, True/False, Short essays, Concept explanations, short summary					
(K2)	overview.					
Application	Suggest idea/concept with examples, suggest formulae, solve problems,					
(K3)	Observe, Explain.					
Analyze (K4)	Problem-solving questions, finish a procedure in many steps, Differentiate between various ideas, Map knowledge.					
Evaluate (K5)	Longer essay/ Evaluation essay, Critique or justify with pros and cons.					
Create (K6)	Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations.					

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUC	TURE AN	D B()NDING	IN IN	NORGANIC	COMPOUNDS		
Course									
Paper No.	Core Pap			~		~			
Category	Core	Year	Ι	Credits	5	Course	P23CH102		
		Semester	Ι			Code			
Instructional	Lecture	Tutorial	Lal	o Practice		Total			
hours per week	5	2	-			7			
Prerequisites		ncepts of In							
Objectives of the		nine the str	uctur	al propert	ies o	f main group	compounds and		
course	clusters.								
	To gain	fundamenta	l kn	owledge of	on th	ne structural	aspects of ionic		
	crystals.								
	To famili	arize variou	s diff	raction and	d mic	croscopic tech	niques.		
						ne defects in i	-		
	•	te the struct							
Course Outline		64	C	•					
					-	pounds and cl			
							ms (Bent's rule)		
							- applications of		
	-				-	-	nents in silicates		
		1.4				ilicones, Struc	dimensional and		
							ly acids – types,		
	-					-	• • • •		
	examples and structures; Borane cluster: Structural features of closo, nido, arachano and klado; carboranes, hetero and metalloboranes;								
							ture of borane		
							Ietal clusters:		
	Structure	and bonding	gord	innuclear c	iuste	r Re ₂ CI			
	UNIT-II	: Solid state	e che	emistry –	I: Io	nic crystals: I	Packing of		
						gonal and cu			
						atio, Crystal sy			
						rystals, glide j			
			-		-	; Solid state e	-		
						- Kapustinski			
		-		er's rule,	Bor	n-Haber cycle	e- Factors		
	affecting	Lattice Ener	rgy.						
				•					
				•			ares of the crystal		
	-						and anti-fluorite,		
							; Spinels -normal		
		• •	-			•	Growth methods:		
			on (h	ydrotherm	al, sc	or-ger methods) – principles and		
	examples		•	1. 1. 1	4 . 4		7 1.00		
		_				-	K-ray diffraction		
							– Principle and		
			-				les, Phase purity,		
	Scherrer	tormula, lat	tice	constants	calcu	lation; Syster	natic absence of		

	reflections; Electron diffraction technique – principle, instrumentation							
	and application. Electron microscopy – difference between optical and							
	electron microscopy, theory, principle, instrumentation, sampling							
	methods and applications of SEM and TEM.							
	UNIT-V: Band theory and defects in solids							
	Band theory – features and its application of conductors, insulators and							
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in							
	crystals - point defects (Schottky, Frenkel, metal excess and metal							
	deficient) and their effect on the electrical and optical property, laser and							
	phosphors; Linear defects and its effects due to dislocations.							
Entended								
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others							
Component (is a	to be solved							
part of internal	(To be discussed during the Tutorial hours)							
component only,								
Not to be included								
in the external								
examination								
question paper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional							
from this course	Competency, Professional Communication and Transferable skills.							
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition							
Text	(Students Edition), John Wiley & Sons Ltd., 2014.							
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,							
	Himalaya Publishing House, 2001.							
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th							
	Edition, CRC Press, 2012.							
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders							
	company: Philadelphia, 1977.							
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;							
	4th ed.; Harper and Row: NewYork, 1983.							
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and							
	Models in Inorganic Chemistry, 3rd Ed, 1994.							
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd							
	edition, Wiley Publication, 2013.							
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State							
	 Chemistry, 2nd Edition, Cambridge University Press, 199. 4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John 							
	4. 1. Woener, morganic Chemistry, A Wodern mitoduction, John Wiley: New York, 1982.							
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic							
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.							
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-							
e-learning source	fall-2018/video_galleries/lecture-videos/							
- icuining source								

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

T:41	Γ								
Title of the Course		ORGA	NIC	CHEMI	STR	Y PRACTICA	AL		
Paper No.	Core Pra	ation I							
Category	Core	Year	Ι	Credits	4	Course	P23CH1P1		
Category	Core	Semester	I	Cicuits	+	Code	12501111		
Instructional	Lecture	Tutorial	_) Practice		Total			
hours per week	Lecture	1	L at) I lactice		6			
Prerequisites	- Basic cor	ncepts of or	٠	c chemisti	·v	0			
Objectives of the					•	ion qualitati	ve analysis and		
course		To understand the concept of separation, qualitative analysis and preparation of organic compounds.							
		U		1	hand	ling of shom	ical reagents for		
		- •				-	ical leagents for		
	-	n of binary a		• •			11 1		
	-	-		ed organie	c co	mponents sy	stematically and		
		them suitable	•	orimontal	cotu	n for the org	anic preparations		
		two stages.	e exp	ermentar	setu	p for the org	and preparations		
	-	-	rent	nurificatio	nn ai	nd drving te	chniques for the		
	-	d processing		puilleati	<i>m</i> a	ind drying tes	chiliques for the		
Course Outline	-	Separation		analysis:					
course outline		o component							
		ee compone			emor	stration)			
		: Estimation		× ×		,			
	a) l	Estimation of	of Phe	enol (brom	inati	on)			
	b) 1	Estimation of	of An	iline (bror	ninat	ion)			
				• •		ne (iodimetry)			
	,	Estimation of			· ·				
		Estimation of				•			
					-	oups (reductio	n)		
		Estimation o							
		Estimation of				-			
	,	Estimation c				ter (alkalimet	ry)		
		Estimation of							
		I: Two stag				tylation)			
		Bromoaceta	-	-					
	· •	-Nitroaniline							
		3,5-Tribrom				ne			
	<i>,</i>	cetyl salicyc							
		enzilic acid			•	-			
	f) <i>m</i>	-Nitroanilin	e froi	m nitroben	zene				
	g) m	-Nitrobenzo	oic ac	id from m	ethyl	benzoate			
Extended	Ouestions	s related to t	he al	ove topics	s. fro	m various con	npetitive		
Professional				-			/TNPSC others		
Component (is a	to be solv			_					
part of internal	(To be dis	scussed duri	ng th	e Tutorial	hour	·s)			
component only,			_						

Not to be included n the external n the external examination examination guestion paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional competency, Professional Communication and Transferable skills. Recommended 1. A R West, Solid state Chemistry and its applications, 2ndEdition
examination question paper)Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended1. A R West, Solid state Chemistry and its applications, 2ndEdition
Juestion paper)Skills acquired rom this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended1. A R West, Solid state Chemistry and its applications, 2ndEdition
Skills acquired rom this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended1. A R West, Solid state Chemistry and its applications, 2ndEdition
rom this courseCompetency, Professional Communication and Transferable skills.Recommended1. A R West, Solid state Chemistry and its applications, 2ndEdition
Recommended 1. A R West, Solid state Chemistry and its applications, 2ndEdition
Fext (Students Edition), John Wiley & Sons Ltd., 2014.
2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
Himalaya Publishing House, 2001.
3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
Edition, CRC Press, 2012.
Reference Books 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
Models in Inorganic Chemistry, 3rd Ed, 1994.
2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
edition, Wiley Publication, 2013.
3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source <u>chemistry-fall-2018/video_galleries/lecture-videos/</u>
Course Learning Outcomes (for Mapping with POs and PSOs)
Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation. **CO2**: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the Course		BIO	D-IN	ORGANI	C CI	HEMISTRY				
Paper No.	Elective	I								
Category	Elective	Year	Ι	Credits	3	Course	P23CH1:A			
		Semester	Ι			Code				
Instructional	Lecture	Tutorial	Lal	b Practice		Total				
hours per week	5	-	-			5				
Prerequisites		owledge of								
Objectives of the		stand the rol								
course						of iron & sul	pur.			
		the toxicity				es.				
		nowledge o				oportion				
Course Outline		s on various Essential t					ort and storage of			
Course Outline						-	im and potassium			
						-	-			
		transport, Calcium signalling proteins. Metalloenzymes: Zinc enzymes– carboxypeptidase and carbonic anhydrase. Iron enzymes–catalase,								
		-			-		-			
	peroxidase. Copper enzymes – superoxide dismutase, Plast ocyanin, Ceruloplasmin, Tyrosinase. Coenzymes - Vitamin-B12 coenzymes.									
		-			•••		Hemoglobin and			
							nding of CO, NO,			
				-		-	redox system:			
	-			-		-	ytochrome P-450.			
							nin. Iron-sulphur			
	proteins-	Rubredoxin	and	Ferredoxir	1- Str	ucture and cla	assification.			
							f nitrogen fixing			
							rs in nitrogenase-			
							etal complexes of			
	0	0					and reduction of			
	-			-	-	hotosystem-I	and photosystem-			
		hylls struct				visity of Ug	Cd, Zn, Pb, As,			
							Diabetes Drugs;			
		-	-				therapy; Cancer			
		-			-		ents; Gadolinium			
		-	-			itical magneti				
							omenclature and			
		-			-		on and the effects			
		•			-		I, temperature on			
	-			-		the efficiency	-			

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery Publishing
	House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes,
	II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. <u>https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-</u>
e-learning source	the-instant-notes-chemistry-series-d162097454.html
0	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-
	5th-edition-d161563417.html

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	_							
Course	NANO MATERIALS AND NANO TECHNOLOGY							
Paper No.	Elective I							
Category	Elective	Year	Ι	Credits	3	Course	P23CH1:B	
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lał	o Practice		Total		
hours per week	4	1	-			5		
Prerequisites		-			-	d material sci		
Objectives of the			-			als and nano t	••	
course							heir properties.	
				•		• •	nt nano materials.	
			icteri	stics of va	rious	nano materia	ls synthesized by	
	new techr	-		C (1	. 1		. • •	
Course Outly	To design					ly used new na		
Course Outline							anotechnologies,	
							3D. Synthesis-	
						_	ders. Features of	
			-				ues of synthesis	
					e na	anoscience.	Applications of	
		rials and tec		-				
		-					s, Predicting the	
	• -	-		•			lic nanoparticles,	
	Surfaces	of Material	ls, N	anoparticl	e Siz	ze and Prope	rties. Synthesis-	
	Physical a	and chemica	ıl me	thods - ine	ert ga	as condensatio	n, arc discharge,	
	laser abl	ation, sol-g	gel, s	solvothern	nal a	nd hydrother	mal-CVD-types,	
	metallo organic, plasma enhanced, and low-pressure CVD. Microwave							
	assisted a	nd electroch	emic	al synthes	is.			
	 UNIT-III: Mechanical properties of materials, theories relevant to mechanical properties. Techniques to study mechanical properties of nanomaterials, adhesion and friction, thermal properties of nanomaterials Nanoparticles: gold and silver, metal oxides: silica, iron oxide and alumina - synthesis and properties. UNIT-IV: Electrical properties, Conductivity and Resistivity, Classification of Materials based on Conductivity, magnetic properties, electronic properties of materials. Classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type semiconductor-Hall effect - quantum and anomalous, Hall voltage - interpretation of charge carrier density. Applications of semiconductors: p-n junction as transistors and rectifiers, photovoltaic and photogalvanic cell. UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in different fields. Core-shell nanoparticles - types, synthesis, and properties. Nanocomposites - metal-, ceramic- and polymer-matrix composites-applications. Characterization – SEM, TEM and AFM - principle, 							
							netic properties, of magnetic a-Ge, Si, GaAs, as p and n –type Hall voltage – semiconductors:	
							s, and properties. trix composites-	

	instrumentation and applications.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications,2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.

Website and	1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u> .
e-learning source	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .
	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	e:

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the		MC				TDAGADY			
Course	MOLECULAR SPECTROSCOPY								
Paper No.	Elective II								
Category	Elective	Year	Ι	Credits	3	Course	P23CH1:C		
		Semester	Ι			Code			
Instructional	Lecture	Tutorial	Lab	o Practice		Total			
hours per week	4	1	-			5			
Prerequisites		owledge of				1 11 1			
Objectives of the	To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.								
course									
	•	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR							
	-	10	-	-		in Mass spect			
	0.	0					ole to interpret the		
				• 1		ronic transitio			
							terms of splitting such as COSY,		
		R, NOESY.	lis us	sing corre	ano	ii teeninques	such as COST,		
		,	ructu	ral elucida	ation	of molecule	s using different		
	To carry out the structural elucidation of molecules using different spectral techniques.								
Course Outline	ÚNIT-I:	Rotational	and	Raman S	pect	roscopy: Rota	ational spectra of		
	diatomic	and polyate	omic	molecule	s. In	tensities of ro	otational spectral		
	lines, effe	ect of isotop	ic sul	bstitution.	Non	-rigid rotators	. Classical theory		
		-				-	-		
	of the Raman effect, polarizability as a tensor, polarizability ellipsoids, quantum theory of the Raman effect, Pure rotational Raman spectra of								
	linear and asymmetric top molecules, Stokes and anti-Stokes lines.								
		•		-			ns, rule of mutual		
		-				•	, Polarization of		
		attered phot					,		
		1		Spectros	ronv	· Vibrations	of molecules		
	UNIT-II: Vibrational Spectroscopy: Vibrations of molecules, harmonic and anharmonic oscillators- vibrational energy expression,								
							their symmetry,		
							nes, computation		
	of intensities, hot bands, effect of isotopic substitution. Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R								
						11	approximation.		
							ties, overtone and		
							ational spectra of		
							nd perpendicular		
		s of linear an				Electronic	Spectroscopy:		
				-			Condon principle,		
							* transitions and		
							Basic principles,		
							y photoelectron		
							lation inversion,		
						simple laser s			

	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors
	influencing chemical shifts: electronegativity and electrostatic effects;
	Mechanism of shielding and deshielding. Spin systems: First order and
	second order coupling of AB systems, Simplification of complex spectra.
	Spin-spin interactions: Homonuclear coupling interactions - AX, AX2,
	AB types. Vicinal, germinal and long-range coupling-spin decoupling.
	Nuclear Overhauser effect (NOE), Factors influencing coupling
	constants and Relative intensities. 13CNMR and structural correlations,
	Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction
	to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR
	spectra, line shapes and line widths; ESR spectrometer. The g value and
	the hyperfine coupling parameter (A), origin of hyperfine interaction.
	Interpretation of ESR spectra and structure elucidation of organic radicals
	using ESR spectroscopy; Spin orbit coupling and significance of g-
	tensors, zero/non-zero field splitting, Kramer's degeneracy, application
	to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra
	of magnetically dilute samples.
	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy:
	Ionization techniques- Electron ionization (EI), chemical ionization
	(CI), desorption ionization (FAB/MALDI), electrospray ionization
	(ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral
	fragmentation, high resolution. Effect of isotopes on the appearance of
	mass spectrum. EPR spectra of anisotropic systems - anisotropy in g-
	value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine
	splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and
	Kramer's degeneracy. Applications of EPR to organic and inorganic
	systems. Structural elucidation of organic compounds by combined
	spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift,
	recoil energy. Isomer shift, quadrupole splitting, magnetic interactions.
	Applications: Mossbauer spectra of high and low-spin Fe and Sn
	compounds.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.

Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, Spectroscopic Identification
	of Organic Compounds, 6th Ed., John Wiley & Sons, New York,
	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
	Society, 1987.
	4. D. H. Williams and I. Fleming, <i>Spectroscopic Methods in Organic</i>
	Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988.
	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
	Philadelphia, 1992.
Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Website and	1. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>
. 1	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
e-learning source	2. <u>https://www.diginiat.ii//iptel/courses/video/104100122/L14.ittini</u>

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules. **CO3**: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	М	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the		r	MET		CIII	MISTRY			
Course		1	VIEL	JUINAL	CHE	AVIISI K Y			
Paper No.	Elective	Ι							
Category	Elective	Year	Ι	Credits	3	Course	P23CH1:D		
		Semester	Ι			Code			
Instructional	Lecture	Tutorial	Lab Practice			Total	I		
hours per week	4	1	-			5			
Prerequisites	Basic kn	owledge of	medi	cinal che	mistr	v			
Objectives of the							f pharmaceutical		
course	materials.								
	To gain k	nowledge o	n me	chanism a	nd ac	tion of drugs.			
	U	U				usage of drug			
	To famili	arize with the	he m	ode of act	ion o	f diabetic age	nts and treatment		
	of diabete	es.				_			
	To identit	fy and apply	the a	action of v	variou	is antibiotics.			
Course Outline	UNIT-I:	Introducti	on t	o recepto	rs:	Introduction,	targets, Agonist,		
	-			-			Theories of Drug		
	– recep	otor intera	oction	n, Drug	sy	nergism, D	rug resistance,		
		nemical fact							
							ntibiotics action,		
				•			of action, SAR of		
	-		-				of penicillins,		
		orin.Curren							
		• -		0			Classification of		
		-				• •	etiology, types,		
							and mechanism of		
						lorothiazide, A			
				0			ry of Antidiabetic		
							for the treatment, ment of diabetic		
		Chemistry o				,	ment of diabetic		
		· · · · ·							
		-					matory Drugs:		
	Introduct	,				/	ssification and		
			-			-	fenac, naproxen,		
Extended		acin, pheny					natitiva		
Professional	-			-		m various con	E /TNPSC others		
Component (is a	to be solv		1 1 1) / INL/ (JUC-	CSIK/ UATE	7 TNI SC Oulers		
part of internal		eu scussed duri	no th	e Tutorial	hou	s)			
component only,		seusseu uull	-15 U		noul				
Not to be included									
in the external									
examination									
question paper)									
Skills acquired	Knowled	ge, Problem	solv	ing, Analy	tical	ability, Profes	ssional		
from this course	Competer	ncy, Profess	ional	Commun	icatio	on and Transfe	rable skills.		
Recommended	1. Wilson	and Gisvol	d's te	xtbook of	orga	nic medicinal	and		

Text	pharmaceutical chemistry,								
	2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H,								
	Lipincott William, 12th edition, 2011.								
	 Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford University Press, 2013. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999, 								
	1999 edn.								
	4. O. LeRoy, Natural and synthetic organic medicinal compounds,								
	Ealemi, 1976.								
	5.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New								
	Delhi, 1993, New edn.								
Reference Books	1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh								
	Edition, 2012								
	 Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010. 								
	3. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12 th edn.								
	4. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.								
	5. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of								
	Medical Biochemistry, Hyderabad: Orient Longman. 3 rd edition,								
	2001.								
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/								
e-learning source	2. <u>https://training.seer.cancer.gov/treatment/chemotherapy/types.html</u>								
	3. <u>https://www.classcentral.com/course/swayam-medicinal-chemistry-</u>								
	12908								

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties. **CO4**: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		ORGANIC I	REAC	TION ME	CHA	ANISM - I	I
Paper No.	Core Pape	r III					
Category	Core	Year	Ι	Credits 5 Course H			P23CH203
Category	Core	Semester	I	Creans	5	Code	F 23C11203
T	T			D			
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	2	-			6	
Prerequisites	Basic knov	vledge of organi	c chen	nistry			
Objectives of	To underst	and the concept	of an	omaticity	in b	enzenoid,	non-benzenoid,
the course	heterocycli	c and annulene co	ompou	nds.			
	To understa	and the mechanis	m invo	olved in var	rious	types of o	rganic reactions
	with evider						
	To understa	and the application	ns of s	synthetical	ly im	portant rea	igents.
	To correlate	e the reactivity be	etweer	aliphatic a	and a	romatic co	mpounds.
	To design s	ynthetic routes for	or synt	hetically u	sed o	rganic rea	ctions.
Course	UNIT-I: E	limination and 1	Free I	Radical Re	actio	ons: Mech	anisms: E2, E1,
Outline	and E1cB n	nechanisms. Syn-	and a	nti-elimina	tions	. Orientatio	on of the double
		mann and Saytzet					
		ng group and me			-		-
					-		-
	•	ystems, pyrolytic			U		
		on of radicals by		-			
	and stabilit	y of radicals, ch	aracte	ristics of f	free 1	radical rea	ctions and free
	radical, rea	actions of radic	als; p	olymerizat	tion,	addition,	halogenations,
	aromatic su	bstitutions, rearr	angen	nents. Read	tivit	y: Reactivi	ty on aliphatic,
	aromatic su	bstrates, reactivit	y in th	ne attacking	g radi	ical, effect	of solvent.
		Oxidation and	-				
		nsfer, hydride tra					
		, oxidative and		• •		-	
		reactions: Dehyd		-	-		
		e, mercuric aceta					
	-	smium tetroxide					-
		ohols, halides an				•	
		leavage of doul				-	-
		oxidation by chro					• •
		(kidation) and					
		yl carbodiimide	•				• 1
		Volff-Kishner, Cl					
		nyltin hydrides,					•
	-	ion, Hydroborati		•			-
	Blanc reduc		,,1	ejene b	,		
		Rearrangement	s: Rea	rrangemen	ts to	electron d	eficient carbon
		-		-			
	-	acolone and sem	-		-	-	
		istry, Wagner-M		-			-
		nan, Benzilic acio			-		-
	1	ficient nitrogen:		~ .	~		

	and abnormal Beckmann rearrangements. Rearrangements to electron
	deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements.
	Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens,
	[1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries
	rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen,
	Cope, oxy-Cope Benzidine rearrangements.
	UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition
	to carbon-carbon multiple bonds- Addition reactions involving electrophiles,
	nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and
	reactivity, hydrogenation of double and triple bonds, Michael reaction,
	addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom
	multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard
	reagents, Wittig reaction, Prins reaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of
	Grignard reagents, organozinc and organolithium reagents to carbonyl and
	unsaturated carbonyl compounds. Mechanism of condensation reactions
	involving enolates –Stobbe reactions. Hydrolysis of esters and amides,
	ammonolysis of esters.
	UNIT-V: Reagents and Modern Synthetic Reactions: Lithium
	diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium
	cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA),
	Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD, Triethylamine (TEA),
	Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate
	(DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS),
	Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO),
	Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu,
	Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ , NaIO ₄ ,
	Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC),
	Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction,
	Baylis-Hillman reaction.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only, Not to be included in the	
external	
examination	
question	
paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
course	Toressional Communication and Transferable skins.
000100	1

r	
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed.,
Text	0 . . .
	John-Wiley and Sons. 2001.
	2. E. S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
	Rinehart and Winston Inc., 1959.
	3. P. S. Kalsi, <i>Stereochemistry of carbon compounds</i> , 8 th edn, New Age
	International Publishers, 2015.
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry,
	7 th edn., Pearson Education, 2010.
Reference	1. S. H. Pine, Organic Chemistry, 5thedn, McGraw Hill
Books	International Editionn, 1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-Wiley,
	2010.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. <u>https://www.organic-chemistry.org/</u>
Course Learnin	g Outcomes (for Mapping with POs and PSOs)

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

T:41 £ 41							
Title of the Course			DUV	SICAL C	UFN	IISTRY-I	
Course				SICAL C		1151 K 1 - 1	
Paper No.	Core Pa	oer IV					
Category	Core	Year	Ι	Credits	5	Course	P23CH204
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	2	-			6	
Prerequisites		ncepts of ph	•		-	· 1	.1 0
Objectives of the				s of therm	lodyr	namics and	the composition of
course	-	olar quantiti stand the cla		l and stati	stical	approach o	f the functions
							n, Fermi-Dirac and
	Bose-Ein		inneu		u21170C	Donzina	i, i cinii Dirac and
	To corre	late the th	eorie	s of read	ction	rates for	the evaluation of
	•	mamic parai					
		the mechan					
Course Outline				•			molar properties-
		-				-	inary and ternary
	-			-		-	Thermodynamics of
	Ŭ	0	•			•••	by graphical and
							ture, pressure and
	-		•				al binary mixtures,
			-				non-ideal mixtures.
	-	-					termination-vapour
	-	EMF and fr					
		rnamics co		-			tion of statistical and mathematical
							non-distinguishable
	-					-	ticles. Maxwell -
							s- comparison and ational, vibrational
							nic, diatomic and
		-					n terms of partition
		-		•			istical approach to
		ynamic pro	-	-			energy, entropy,
	enthalpy,						residual entropy,
	-				-	-	at capacity of mono capacity of solids-
		and Debye n		-	nyui	ogen. meat	capacity of solids-
		•			nami	cs: Theorie	s of conservation of
				•			by heat, matter and
							theory-validity and
							kinetic and thermo
			Appli	cation of	irre	eversible t	hermodynamics to
	0	l systems.	of	Pagationa	• Th	eories of	reactions-effect of
							of reaction rates,
			JUOII	rails, U	11131	in theory	or reaction rates,

	Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions- Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2$ $- Br_2$ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods - stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic,
	anionic polymerization - Polycondensation.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation,M acmillan India Ltd, Reprint - 2011.
Reference Books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and	1. https://nptel.ac.in/courses/104/103/104103112/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the		NODO		C CHEM	ICTI		CAL
Course		INOKG	rAINI	C CHEM	1211	RY PRACTI	CAL
Paper No.	Core Pra	ctical II					
Category	Core	Year	I Credits 4			Course	P23CH2P2
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lał) Practice		Total	
hours per week	-	1	5			6	
Prerequisites	Basic pri	nciples of g	ravi	metric an	d au	alitative anal	vsis
Objectives of the							an analytical tool
course		antitative es					5
	-					aring standard	d solutions.
				•		-	ting the amount of
		ately prese					ting the amount of
		• 1				ven solution a	accurately without
	using inst		, p.	•••••	8-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	U U		ount d	of ions. pro	esent	in a binarv m	nixture accurately.
Course Outline							a mixture of four
		-				-	cations. Cations to
	be tested.	0					
	Group-I	: W, T	'l and	Pb.			
	Group-II		Te, M	o, Cu, Bi a	and C	Cd.	
	Group-II					Ti and U.	
	Group-IV			o and Mn.			
	Group-V						
	Group-V		ld Mg	z .			
	UNIT-II	Preparati	on o	f metal c	ompl	exes: Prepara	ation of inorganic
	complexe				-	-	-
		ation of trist					
	b. Prepara	ation of pota	assiur	n trioxalat	e chi	omate(III)	
		ation of tetra			II) sı	ılphate	
	d. Prepara	ation of Rei	neck'	s salt			
	-					hloridedihydı	
	-					e diaquachron	nate(III)
		ation of sodi					
	-	ation of hexa			<i>,</i>	rate	
		[: Complex					
				-		, and calcium	
				f metal ion	ns-pH	I control, mas	sking and
		king agents.					•
						n mixture (pH	
			-		-	esence of iron	•
	5. Determ	nination of n	пске	in the pre	senc	e of iron.	
Extended						m various con	
Professional			/ TRI	3 / NET/ U	JGC-	CSIR / GATI	E /TNPSC others
Component (is a	to be solv						
part of internal	(To be di	scussed duri	ing th	e Tutorial	hou	rs)	
component only,							
Not to be included							
in the external							

examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rded.,
	The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
	University Press, 1954.
Course Learning (uteemes (for Manning with PAs and PSAs)

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5: To synthesize coordination compounds in good quality.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the Course			EL	ECTROC	HEN	IISTRY	
Paper No.	Elective	ш				-	
Category	Elective	Year	Ι	Credits	3	Course	P23CH2:A
		Semester	II			Code	
Instructional	Lecture	Tutorial	L	ab Practi	ce	T	otal
hours per week	3	1		-			4
Prerequisites	Basic kno	wledge of e	lectr	ochemistry	/		
Objectives of the	To unders	stand the bel	navio	or of electro	olytes	s in terms of co	nductance, ionic
course	atmosphe	re, interactio	ons.				
	To famili	arize the st	ructu	are of the	elect	rical double la	yer of different
	models.						
	-					ensity and over	r potential.
						nical reactions.	
	-	-		• •	ver v	voltages and its	s applications in
		alytical tech					
Course Outline							off factor and its
							behavior. Ionic
							efficient-concept
							trolytes, activity
							y coefficient ion
							Huckel Bjerrum
							at appreciable
			-				ons. Electrolytic ong electrolyte-
		•		0			s. Evidence for
						ble ion formation	
		-			_		phenomena -
				•			non-polarizable
							equation electro
	capillary	curves.	-	ctro-kineti			electro-osmosis,
	- ·				-	L	s, colloidal and
	-		-	-		-	-Perrin, Guoy-
		•					eta potential and
	-					limitations.	1
							ons: Behavior of
					-		ium. Anodic and
						-	Nernst equation,
	polarizab	le and non-	pola	rizable ele	ectro	des. Model of	three electrode
							ctions: Rates of
	simple el	lementary r	eacti	ons. Butle	er-Vo	lmer equation	-significance of
	-		•			• •	etry factor. Low
					netry	factor and tra	nsfer coefficient
		ations and T					
							ystem: Rates of
	-					-	for a multi-step
	reaction.			0	1 /	1	olarization and
	depolariz	ation. Trans	fer co	oefficients	, its s	significance and	d determination,

	Stoichiometric number. Electro-chemical reaction mechanisms-rate
	expressions, order, and surface coverage. Reduction of I ³⁻ , Fe ²⁺ , and
	dissolution of Fe to Fe ²⁺ . Overvoltage - Chemical and electro chemical,
	Phase, activation and concentration over potentials. Evolution of oxygen
	and hydrogen at different pH. Pourbiax and Evan's diagrams.
	UNIT-V: Concentration Polarization, Batteries and Fuel cells: Modes of
	Transport of electro active species - Diffusion, migration and
	hydrodynamic modes. Role of supporting electrolytes. Polarography-
	principle and applications. Principle of square wave polarography. Cyclic
	voltammetry- anodic and cathodic stripping voltammetry and differential
	pulse voltammetry. Sodium and lithium-ion batteries and redox flow
	batteries. Mechanism of charge storage: conversion and alloying.
	Capacitors- mechanism of energy storage, charging at constant current
	and constant voltage. Energy production systems: Fuel Cells:
	classification, alkaline fuel cells, phosphoric acid fuel cells, high
	temperature fuel cells.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	Ň, Č, ,
Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. D. R. Crow, Principles and applications of electrochemistry, 4 th
Text	edition, Chapman & Hall/CRC, 2014.
	2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical
	transformations Macmillan India Ltd., New Delhi, 2011.
	3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt.,
	Ltd., New Delhi, 2008.
	4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and
	P.S. Raghavan, Electrochemistry-Principles and applications, S.
	Viswanathan Printers, Chennai, 2007.
	5. Joseph Wang, Analytical Electrochemistry, 2 nd edition, Wiley, 2004.
Reference Books	1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1
	and 2B, Springer, Plenum Press, New York, 2008.
	2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro
	chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
	3. Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New York,
	2010.
	4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
	5. K.L. Kapoor, A Text book of Physical chemistry, volume-3,
	Macmillan, 2001.

Website and e-learning source	1. <u>https://www.pdfdrive.com/modern-electrochemistry-e34333229</u>
Course Learning Ou	tcomes (for Mapping with POs and PSOs)
Students will be able	2:
	the behaviour of electrolytes in solution and compare the structures of
•	ver of different models.
equations	kinetics of electrode reactions applying Butler-Volmer and Tafel
CO3: To study diffe	rent thermodynamic mechanism of corrosion,
•	theories of electrolytes, electrical double layer, electrodics and activity
	-

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	М	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the											
Course			Gl	REEN CH	IEM	ISTRY					
Paper No.	Elective	III									
Category	Elective	Year	Ι	Credits	3	Course	P23CH2:B				
		Semester	II			Code					
Instructional	Lecture	Tutorial	Lał	• Practice	Total						
hours per week	3	1	-			4					
Prerequisites	Basic kno	owledge of g	gene	ral chemis	stry						
Objectives of the course	To discuss the principles of green chemistry. To propose green solutions for chemical energy storage and conversion. Propose green solutions for industrial production of Petroleum and Petrochemicals. Propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries. Propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals.										
Course Outline	UNIT-I: Introduction- Need for Green Chemistry. Goals of Green Chemistry. Limitations/ of Green Chemistry. Chemical accidents, terminologies, Internationall green chemistry organizations and Twelve principles of Green Chemistry with examples.										
	green reag criteria, g Supercriti few exam and catect UNIT-III Oxidation styrene a supported UNIT-IV hydrogen anhydride Applicatie	gents: dimet general met ical carbon ples of orga hol. I: Environn a catalysts, aluminum of photosensit Phase tran peroxide, e formation ons in organ Micro ntation, Pr ntation, Cavi	hyl c hods dioxi nic ro nenta Basic chlor tizers nsfer , El ic sy wave incip	arbonate. of prepa de- prope eactions in 1 pollutio catalysts ide, poly catalysis own eth imination nthesis. e induce le and	Green ration rties, scCo n, G , Pol meric in gr ners-e reac d g appl	n solvents: Wa n, effect on o advantages, c O ₂ . Green synt reen Catalysis ymer supporte super acid reen synthesis- sterification, tion, Displace	ion, Displacement reaction. een synthesis-Introduction, cations. Sonochemistry –				
Extended Professional Component (is a part of internal component only, Not to be included in the external	Questions examinations to be solv	s related to the rela	TRE	3 / NET/ U	JGC-		petitive /TNPSC others				

examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill, NewDelhi, 2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,
	American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. <u>https://www.organic-chemistry.org/</u>
e-learning source	3. <u>https://www.studyorgo.com/summary.php</u>
Course Learning (Dutcomes (for Mapping with POs and PSOs)

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	ORGANIC SPECTROSCOPY									
Paper No.	Elective -IV									
Category	Core	Year	Ι	Credit	3	Course	P23CH2:C			
Cutegory	Industry	I cui	-	crean	5	Code	1230112.0			
	Module	Semester	II	-		0.000				
	module	Seniester	11							
Instructional	Lecture	Tutorial	Lab	Practice	Total		1			
hours per week	4	-	-		4					
Prerequisites	Basics of Orga	anic Spectrosc	copy							
Objectives of the course	To apply the p molecules. To apply the p chemical envi To understand elucidation.	orinciple of IR orinciple of ¹ H ronment prese l the principle	spectr -NMR ent in th behind	V-vis Spectroscopy. oscopy for predicting functional groups of organic and ¹³ C-NMR spectroscopy for predicting the molecule. Mass Spectrometry and its uses in the structural						
		egrate Mass spectrometry, UV, FT-IR and NMR spectroscopic techniques for uctural elucidation of unknown organic molecule.								
Course				- U			ectra: Absorption			
outline	UV absorption unsaturated of of aromatic a Unit-II: FT Examples re- angles in IR alkanes, alke and Amines. vibration, Al and lactame compounds. Unit-III: N Relaxation I Diamagnetic Hybridisation Magnetic Arr splitting, Co Coupling (¹ J Range Coup compound-A Alcohols, Et Acids, Amic Chemical shi	on maximum arbonyl com- ind Heterocy- IR spectros lated to influ- spectra. Ch- enes, and alky Carbonyl co- dehydes, keto s, Acid Ch- lated to influ- spectra. Ch- enes, and alky Carbonyl co- dehydes, keto s, Acid Ch- lated to influ- spectra. Ch- spectra and alky constant of the ling (⁴ J- ⁿ J). Ilkanes, alker hers, Amines les and Niro ift reagents; H C-NMR Spectra Spectra and Spectra Spectra and Spectra C-NMR Spectra Spectra and Spectra Spectra and Spectra Spectra and Spectra Spectra and Spectra Spectra and Spectra C-NMR Spectra Spectra and Spectra and Spectra and Spectra Spectra and Spectra and Spectra and Spectra and Spectra Spectra and Spectra and Spectra and Spectra and Spectra Spectra and Spectra	n in co pound clic co copy: ence co aracte ynes; , ompou ones, C nloride Chemi Electro class an in-spin tant-S Coup Survey nes, A s, Nitro alkane High fi ectrose	onjugated s and carb <u>ompounds</u> Features of electron ristic vib Aromatic unds-Fact Carboxyli es, Anhy Reson cal envir onegativit d exchar n splitting ymbol, N ling (² J), y of typic romatic of riles, Aldo es. The e eled Spect copy – T	dienes onyl co <u>s. Steric</u> of IR S nic effect rational rings, <i>J</i> ors infl c Acids drides, ance S onment ty effect ngeable g (n+1) Mechani Three-E cal ¹ H-N compou ehydes, effect of tra. NOI	, Poly-enest ompounds, A effect in bij Spectra: Fin cts, Hydrog frequencie Alcohols an uencing- th , Esters and and conj Spectroscop and Chen ects, Hybr protons: H rule. The c ism of cou Sond Coupli NMR absor nds, Alkyn Ketones, E f solvent of E difference	ger Print Region. en bonding, Bond s: Hydrocarbons- d Phenols, Ethers e C=O stretching lactones, Amides jugated carbonyl by: Introduction, nical Shift, Local idisation effects, ydrogen bonding; origin of spin-spin pling, One-Bond ng (³ J) and Long- ption by types of es, Alkyl halides, Esters, Carboxylic n Chemical shift.			

	experiment-DEPT-45, DEPT-90, DEPT-135. Two-Dimensional										
	Spectroscopic method: Introduction to 2D NMR, COSY and HETCOR										
	technique										
	Unit-V: Mass Spectrometry: Mass spectral fragmentation of organic										
	compounds, common functional groups, molecular ion peak, metastable peak,										
	McLafferty rearrangement. Nitrogen rule. High resolution mass spectrometry.										
	Combined Spectroscopy Problems: Calculation of double bond equivalent										
	and its application in structure elucidation. Structural elucidation of organic										
	molecules involving IR, UV, NMR and mass data.										
Skills	Interpretation of IR, NMR, Mass and UV-Vis Spectra. Structural										
acquired	elucidation of organic molecules using combined spectral data.										
from this	Professional Competency, Professional Communication and										
course	Transferable skills.										
Recomme	1. P.S. Kalsi, "Spectroscopy of Organic Compounds", New Age International										
nded Text	Norre Delle: 2016										
	, New Delhi, 2016.										
	2. Y.R. Sharma, "Elementary Organic spectroscopy- Principles and chemical										
	Applications", S.Chand & Co., New Delhi,2013.										
Deferment	1 D.M. Silverstein, C.C. Dessien and T.C. Mamill, "Supertramatric										
Reference	1. R.M. Silverstein, G.C. Bassier and T.C. Morrill, "Spectrometric										
Books	Identification of Organic Compounds", Wiley, New Delhi, 2015.										
	2. Donald L. Pavia, Gary M. Lampman, George S. Kriz "Introduction to										
	Spectroscopy" Cengage Learning India Private Limited, 2015.										
	3. J.R. Dyer, "Application of Spectroscopy of Organic Compounds", Prentice										
	Hall, New Delhi, 1978.										
	4. W.Kemp, "Organic spectroscopy", Palgrave, New York, 2008.										
Website	1. https://archive.nptel.ac.in/courses/104/108/104108078/										
and	2. https://www.youtube.com/watch?v=_9ZksU4NHxo										
e-learning	3. https://archive.nptel.ac.in/courses/103/108/103108139/										
source											
	Course Learning Outcomes (for Mapping with POs and PSOs)										
	Students will be able										
	CLO1: To analyse the ultraviolet spectra of organic compounds.										
	CLO2: To analyse IR Spectra of various organic compounds										
	pertaining to functional groups and nature of bonding.										
	CLO3: To Interpret NMR (1H, 13C & 2D) spectra for structural										
	elucidation of organic molecules (K5)										
	CLO5: To Decide the structure of organic molecules based on										
	fragmentation pattern derived from mass spectra (K5)										

		Co i o Mupping (Course Articulation Matrix)										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO 1	S	S	S	S	S	S	S	Μ	L	Μ		
CO 2	S	S	Μ	L	L	Μ	L	L	L	S		
CO 3	S	S	S	S	S	S	S	Μ	Μ	S		
CO 4	S	S	Μ	S	S	Μ	Μ	Μ	Μ	S		
CO 5	S	S	Μ	S	Μ	Μ	Μ	Μ	Μ	S		
Strong -	3			•	Med	lium-2			L	ow-1		

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the			М		a a			
Course			NI.	ATERIAI	- SC	IENCE		
Paper No.	Elective	IV						
Category	Elective	Year	Ι	Credits	3	Course	P23CH2:D	
87		Semester	II			Code		
Instructional	Lecture	Tutorial	Lat	• Practice		Total	1	
hours per week	3	1	-			4		
Prerequisites	Basic kno	wledge of	solid	-state che	mist	rv		
Objectives of the		0				•	ods and X-rav	
course	To understand the crystal structure, growth methods and X-ray scattering.							
	U		l, die	lectric and	diff	usion propertie	es of crystals.	
	-	-				1 1	ctivity materials	
	and magn					/ 1	5	
	0		s, cla	ssification	and	applications o	f nanomaterials.	
	-	•					enewable energy	
	conversio		1				0.	
Course Outline	1.1	UNIT-I: C	rysta	llography	: sy	mmetry - unit	cell and Miller	
							and space groups	
	- X-ray d	ffraction-La	aue e	quations-H	Bragg	g's law-recipro	cal lattice and its	
	applicatio	n to geomet	rical	crystallog	raphy	y. Crystal struc	ture-powder and	
							maps, neutron	
	diffraction	n-method ar	nd ap	plications.				
	1.2	UNIT-II: C	Crysta	al growth	me	thods: Nuclea	tion-equilibrium	
	stability a	nd metastał	ole sta	ate. Single	crys	tal –Low and h	nigh temperature,	
	solution g	growth-Gel	l and	sol-gel. C	rysta	l growth meth	ods- nucleation-	
	equilibriu	m stability	and	metastable	e stat	e. Single cryst	al–Low and high	
	temperatu	re, solution	grow	vth– Gel ar	nd so	l-gel. Melt grov	wth - Bridgeman-	
							e, physical and	
		-	-	. Lorentz a	and p	olarization fac	tor - primary and	
		v extinctions						
		—		-	-		Electromagnetic	
	-	· •					- transparency,	
		• •	•	• •		-	oto-, electro-, and	
	•				-	-	nd polymer LED	
							ion - electronic,	
			-	-	-		t of temperature.	
					• •	-	tric breakdown-	
						ical and defect		
		-			-	•	Meissner effect,	
		-			-		Type I and II	
	-				-		s. Soft and hard	
							s. Magneto and	
							netic materials-	
		-	-				ications. Ferro-,	
							blications. Shape	
	-	•					n-linear optics-	
			enerat	iors, mixii	ig of	Laser wavele	ngths by quartz,	
	ruby and	L1INDU3.						

Extended Professional Component (is a part of internal	UNIT-V: Materials for Renewable Energy Conversion: Solar Cells: Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
-	(10 be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external examination	
question paper)	Knowledge, Problem solving, Analytical ability, Professional
Skills acquired from this course	
	Competency, Professional Communication and Transferable skills.
Recommended Text	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Iext	Publishers, 2016.
	 Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and Company
	Ltd, 2001.
	3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
_	3. <u>https://bit.ly/3QyVg2R</u>
Course Learning (Outcomes (for Mapping with POs and PSOs)
Students will be abl	
	nd and recall the synthesis and characteristics of crystal structures,
	gnets, nanomaterials and renewable energy materials.
-	and assess the structure of different materials and their properties.
	d identify new materials for energy applications.
-	the importance of crystal structures, piezoelectric and pyroelectric
	erials, hard and soft magnets, superconductors, solar cells, electrodes,
LED uses, structure	
CO5: To design and	develop new materials with improved property for energy applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course		CHE	MIST	TRY FOR	HEA	LTHY LIVIN	G			
Paper No.	Non-Maj	or Elective	- I							
Category	Elective	Year Semester	I II	Credits	edits 2 Course P23CH2E Code					
Instructional	Lecture	Tutorial) Practice		Total				
hours per week	3	1	-	<u>, 1 1ucucc</u>		4				
Prerequisites	-	wledge of C	Const	ituents of]	Food					
Objectives of the		<u> </u>				emistry in food	l <u>.</u>			
course		about the bi				5				
	3. To impr	ove the know	vledge	e on the che	emistr	y of cosmetics	•			
Course Outline		•					ic table, Elements			
	in the hum	an body, Ess	ential	, Non-esser	ntial e	elements, Criter	ria of essentiality.			
							ents – Constituents			
		lanced diet –								
		es due to foo	d stuf	fs – Food F	Poisor	ing and First a	id to food			
	poisoning.	-								
							based on structure,			
						s – protein ene				
							and renaturation.			
	food.	ins – plant pl	otem	s and egg p	roten	is – recomment	ded allowances in			
		hydrates Cla	ssifics	ation of Ca	·hohv	drates – Basic	Structure of a few			
						bohydrates on (
		ation recomm					cooking			
						ids body const	ituents – food			
							R.M. value of oils			
							lietary fat, Lipid			
		IDL, LDL, C			•					
	3.2 Vitami	ns Sources, r	equir	ement – dei	ficien	cy diseases – d	lecomposition and			
	losses duri	ng cooking.								
						incipal minera				
		•		• •	ement	ts) – Na, Cl, M	g, Fe, Cu, Mo, Zn,			
		Mn, I, S, K,								
Skills acquired	-					ability, Profes				
from this course	-					n and Transfe				
Recommended		Yadav, "Food	l Che	mistry", An	mol l	Publishing (P)	Ltd., New Delhi,			
Text	2000.	D	1 ~			11.1 01	· 2 000			
						ublishers, Cher				
Reference Books		•		•	hem	stry of Ordinai	ry things", John			
		Sons Inc., N			ion -	nd D. Vallinger	agam, "Applied			
	1 Z. IN. KTISI	mamoortny,	n. jev	vasupramar	แหก ด	DU P V9111193V				

Title of the	_						
Course	0	RGANIC S	YNI	THESIS A	ND]	рнотосне	MISTRY
Paper No.	Core V						
Category	Core	Year	II	Credits	5	Course	P23CH305
	0.010	Semester	III		-	Code	
Instructional	Lecture	Tutorial) Practice		Total	
hours per week	5	1	-			6	
Prerequisites	_	wledge of o	organ	ic chemist	rv	Ū	
Objectives of the						v of carbon s	keletons and the
course						elative position	
	-		<u> </u>	-		-	or any successful
	organic s					e	5
	To apply	disconnect	ion a	pproach a	nd io	lentifying suit	table synthons to
	effect suc	cessful orga	nic s	ynthesis.			-
	To learn	the concepts	s of p	ericyclic r	eacti	on mechanism	18.
	To gain t	he knowledg	ge of	photocher	nical	organic react	ions.
Course Outline							ontrol elements:
							synthetic system
							n framework into
							lternate synthetic
							available starting
			-	-			nods. Linear Vs
	-	•		•		-	ing concepts of
							rotective groups,
							on retrosynthetic
							ergent synthesis,
		s of stereoch					ynthetic analysis;
		0	•				and bifunctional
		•		•		-	ediates, available
							native methods.
	-			-	•		ed on umpolung
	0		<u> </u>	•		•	l, carbonyl, thiol
							deprotection in
		0 1			-		s. Use of protective
							eospecific control
	elements.	Functional gr	oup a	alterations a	and tr	ansposition.	
		•					nann rules; The
				1 '	· ·		and correlation
	U	•		•			ons; [2+2], [2+4],
					-	•	ons. Cheletropic
		•			-		ons of conjugated $(1,5)$ $(2,2)$ and
			-	-	-		(1,5), (3,3) and
		-		-		-	onic sigmatropic
	rearrange		Broup				Regioselectivity,
						ricyclic reaction	
		0			•		nical excitation:
	-		-				onskii diagrams; Volmer equation
	mersyste	m crossings	, ene	igy transfe	a pro	cesses; Stern	Volmer equation.

	Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type- I and type-II cleavage reactions; photo reductions; Paterno-Buchi reactions;
	UNIT-V: Organic Photochemistry-II: Photochemistry of α , β - unsaturated ketones; cis-trans isomerisation. Photon energy transfer reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; photo-stationery state; di- π -methane rearrangement; Reaction of conjugated cyclohexadienone to 3,4- diphenyl phenols; Photo oxidation: formation of peroxy compounds- oxidative coupling of aromatic compounds - Barton's reactions.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a part of internal	to be solved (To be discussed during the Tutorial hours)
component only,	(10 be discussed during the Tutorial hours)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata McCraw Hill New York 2002
Text	 Tata McGraw-Hill, New York, 2003. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-
	Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990.
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International Edition, 2011.
Reference Books	 Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great Britain, 2004.
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn, Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc, 1972.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Reactions, New Age International Publishers, New Delhi, 2012.
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf
e-learning source	
Course Learning (Dutcomes (for Mapping with POs and PSOs)

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds.

CO4: To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the course.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the									
Course		COC	ORD	INATION	[CH]	EMISTRY – I			
Paper No.	Core VI								
Category	Core	Year	II	Credits	5	Course	P23CH306		
ouregory	0010	Semester	III	cicuits	C	Code	1 20 0110 0 0		
Instructional	Lecture	Tutorial) Practice		Total			
hours per week	5	1	- 6						
Prerequisites	Basic knowledge of inorganic chemistry								
Objectives of the	To gain insights into the modern theories of bonding in coordination								
course	compoun	-				U			
	To learn	various n	netho	ds to det	ermiı	ne the stabilit	y constants of		
	complexe								
	To understand and construct correlation diagrams and predict the								
				0	-	in the complex			
						electron trans	fer mechanistic		
		of reactions		-		d			
Course Outline						d square plana	Is: Crystal field		
Course Outline						-	•		
	•						nd square planar		
							ecting 10Dq -		
	-			•		-	gy for high spin		
						-	splitting - site		
		-		-			tortions and its		
	conseque	nces. Moleo	cular	Orbital 7	Theor	y and energy	level diagrams		
	concept of	of Weak and	stroi	ng fields, S	Sigma	a and pi bondir	ng in octahedral,		
	square pla	anar and teti	rahed	ral comple	exes.				
	UNIT-II	: Spectral c	hara	cteristics of	of cor	nplexes: Term	states for d ions		
	- characte	eristics of d	-d tra	ansitions -	char	ge transfer spe	ectra - selection		
							Sugano-Tanabe		
							parameter and		
		on of inter-el		-			1		
				1	-		he complexes:		
							of complexes,		
	-	-					ise and overall		
							tors and chelate		
				•			position of the		
	complexe	es: Format	tion	curves	and	Bjerrum's	half method,		
							Ion exchange		
							n method (Job's		
							upling, effect of		
			on	magnetic	mon	nents, quench	ing of orbital		
		moments.	¹			of and -4.4 4'			
							n reactions of		
							bile complexes; pathways for		
							of octahedral		
							e rate of water		
	complexe		auon	or metal	10118		rate of water		

	replacement reaction and their correlation to Crystal Field Activation
	Energy; Substitution reactions in square planar complexes: Trans effect,
	theories of trans effect and applications of trans effect in synthesis of
	square planar compounds; Kurnakov test.
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer
	sphere electron transfer reactions and Marcus-Hush theory; inner sphere
	electron transfer reactions; nature of the bridging ligand in inner sphere
	electron transfer reactions. Photo-redox, photo-substitution and photo-
	isomerisation reactions in complexes and their applications.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry - Principles of structure and reactivity, 4th Edition,
	Pearson Education Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson
	Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced
	Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders
	Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas,
	John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman
	and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/
0	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

	1							
Title of the		PHYSI	[CAI	CHEMI	STR	Y PRACTICA	AL	
Course Banar Na	Cono Duo	ctical III						
Paper No.			TT	Cualita	5	Comma	DOCUODO	
Category	Core	Year Semester	II III	Credits	5	Course Code	P23CH3P3	
Instructional	Lootumo			Ducation				
Instructional	Lecture	Tutorial		• Practice		Total		
hours per week	- D::-1	1	5	1 . 1	4	6		
Prerequisites		wledge of p						
Objectives of the		metric titrat	-	ciple of	cona	uctivity expe	riments through	
course	To evalu	ate the ord	ler o			-	coefficient, and	
		•••		•		• •	rst order kinetics.	
							system forming	
			solid	and fin	d it	s eutectic te	emperatures and	
	composit							
				-		f oxalic acid o		
							on, charge density	
			axwe	en s spee	u d	istribution by	y computational	
Course Outline	calculatio	n. Conductivi	tv F.	morimon	.c			
Course Outline			-	-			1	
						nce of a strong	g electrolyte &	
		erification of O		-		wy & Datamai	nation of aVa of	
		ak acid.	stwa		on La	aw & Determin	nation of pKa of	
			Cohlr	ausch's I a	w fo	r weak electro	lytes	
						ngly soluble s	•	
						veak acid vs N		
		pitation titra		-				
		r		(
	UNIT-II	Kinetics						
	1. Study	the kinetic	s of	acid hyd	rolys	is of an ester	r, determine the	
	•			•	•		energy of the	
	react							
	2. Study t	he kinetics of	of the	reaction b	oetwe	en acetone and	d iodine in acidic	
	medi	um by half-	life n	nethod and	l dete	ermine the orde	er with respect to	
	iodir	e and aceto	ne.					
		I: Phase dia	0					
					simp	le binary syste	em	
		alene-phena						
		phenone- dip	oneny	amine/				
	Adsorpti		6	on abore	o1 0-	datarmination	n of surface area	
	-				val &	determination	n of surface area	
F (1 1		ch isotherm			<u> </u>	•		
Extended	-			-		m various com	-	
Professional			TRE	5 / NET/ U	GC-	CSIK / GATE	/TNPSC others	
Component (is a	to be solv		n ~ 41	o Treta de 1	h			
part of internal		scussed duri	ng th	e i utorial	nour	8)		
component only,								

Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, PHYChemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing
	House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	<u>16/Isem/cmp511/lab_handout_new.pdf</u>
8	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
1	principles associated with various physical chemistry experiments.
	lly plan and perform all the experiments.
	d record systematically the readings in all the experiments.
	nd process the experimentally measured values and compare with
graphical data.	
(VIE, The links of the	

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the							
Course	AN	ALYTICA	L IN	STRUM	ENT	ATION TEC	HNIQUES
Paper No.	Coro Pro	ctical IV					
•	Core	Year	II	I Credits 4 Course P23C			P23CH3P4
Category	Core	Semester	III	Creans	4	Code	F 23C113F4
Instantional	Lasture			Drastias			
Instructional	Lecture	Tutorial		Practice		Total	
hours per week	-		5			6	
Prerequisites	-	s of Electroc				1.D	
Objectives of the						d Potentiometry en experiment	
course	·	ctometric and	•		•	.	бу
		uct different t					
						experiment in a	given set of
	condition		u b 01	unurysis is		superment in u	Siven set of
Course Outline	UNIT-I:	-					
		etermination	n of tl	he equival	ent c	onductance of	f a weak acid at
						ying Ostwald	
						nstant of the a	
	2. D	etermination	n of tl	he equival	ent c	onductance of	f a strong
				-			ining the validity
						g law at high o	
		•				0 0	nd CH ₃ COOH Vs
		aOH.					-
			ric tit	ration of N	JH4C	Cl Vs NaOH.	
						COONa Vs HC	C1.
							l CH ₃ COOH Vs
	N	aOH					
	7. D	etermination	n of p	K _a of wea	k aci	d by EMF me	thod.
		otentiometri	-			•	
	9. P	otentiometri	c titra	ation of Kl	Vs	KMnO _{4.}	
	10. Pe	otentiometri	c titra	ation of a 1	nixtı	are of Chloride	e and Iodide Vs
	A	gNO _{3.}					
	11. D	eterminatior	n of tl	he pH of b	uffe	solution by E	EMF method
	us	sing Quinhy	drone	e and Calo	mel	electrode.	
					e sug	gar in the prese	ence of acid by
		olarimetric r	netho	od.			
	UNIT-II						
					•	olorimetric me	
				•		photometric n	
						•	ole ratio of the
		•		-	l equ	ilibrium const	ant for the
		omplex form					
						•	anide present in
		e given solu				•	
					n co	efficient of fei	rricyanide using
	-	clic voltam	-		_		
						lox potential o	
	fe	rrocyanide r	redox	couple us	ing c	cyclic voltamn	netry.

	7. Estimation of the amount of sulphate present in the given
	solution using Nephelometric turbidimeter.
	8. Estimation of the amount of nitrate present in the given solution
	using spectrophotometric method.
	9. Heavy metal analysis in textiles and textile dyes by AAS
	10. Determination of caffeine in soft drinks by HPLC
	11. Analysis of water quality through COD, DO, BOD
	measurements.
	12. Assay of Riboflavin and Iron in tablet formulations by
	spectrophotometry
	13. Estimation of chromium in steel sample by spectrophotometry
	14. Determination of Stern-Volmer constant of Iodine quenching by
	fluorimetry
	15. Determination of ascorbic acid in real samples using Differential
	Pulse Voltammetry and comparing with specifications
	16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of
	metal ions by Paper chromatography
	17. Estimation of chlorophyll in leaves and phosphate in waste
	water by colorimetry.
	18. Estimation of Fe(II) by 1,10 phenonthroline using
	spectrophotometry
	UNIT-III: Interpretation and identification of the given spectra of
	various organic compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
Extended	
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
	
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, <i>Vogel's</i>
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989.
	3. J. D. Woollins, <i>Inorganic Experiments</i> ; VCH: Weinheim,
	1995.
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva
	Books, New Delhi, 2009.
	5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.

	Viswanathan Co. Pvt., 1996.
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
Website and	1 https://kit.h./20ESE7t
e-learning source	1. https://bit.ly/3QESF7t
8	2. https://bit.ly/3QANOnX

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

	Ultratio	n between i	bo sanc	1003	
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the							
Course	BIOM	IOLECUL	ES A	ND HETI	ERO	CYCLIC CO	OMPOUNDS
Paper No.	Elective	V					
Category	Elective	Year	II	Credits 3		Course	P23CH3:A
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lał	Practice		Total	
hours per week	2	1	-			3	
Prerequisites	Basic know	vledge of ch	emis	try			
Objectives of	To learn th	e basic conc	epts a	and biolog	ical	importance of	biomolecules and
the course	natural pro	ducts.					
	-			ions of ca	rboh	ydrates, prote	ins, nucleic acids,
		d hormones					
						nd terpenoids.	
		ate the stru	cture	determin	atior	n of biomoleo	cules and natural
	products.	1 (1		c	11 1 1 1	1
	different m		ct the	structure	or ne	w alkaloids an	nd terpenoids from
Course Outline			and	motoboli	sm (of corbobyd	rates: Definition,
Course Outline		-				-	Monosaccharides:
			-			-	glucose, fructose
		-					sical and chemical
							Ring structures
		-					cal properties of
				-	-		ch, glycogen and
				•		lysis of carbol	••••
	UNIT-II-	Steroids a	nd H	formones	Ste	proids-Introdu	ction, occurrence,
							ls' hydrocarbon,
			-				ogical importance,
		•		-			sts, physiological
		biosynthesis					ene. Hormones-
	-	•				-	s- androgens and
	estrogens,	adrenocorti	cal h	ormones-c	cortis	sone and cort	isol structure and
						aline and thyr	
						-	nd purification of
	-	• •				-	tabolism of amino
							decarboxylation.
	-	-					acid metabolism
		•				•	ucleosides - direct
				•			side modification,
						•	econdary structure
	of RNA a		vv at	SOII-Crick	1110	dei, sond pr	ase synthesis of
		-		-			– Isoprene rule –
	-		-				of citral, geraniol,
	nerol, men	thol, α-terp	eniol	and α -pin	ene.	Alkaloids–Ge	eneral methods of

	isolation and structural elucidation of conine, piperine and nicotine
	UNIT-V: Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, Wiley VCH, North America, 2007. I. L. Finar, Organic Chemistry Vol-2, 5th edition, Pearson Education Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi, 2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi, 2009.
Reference Books	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education Asia,2004. Pelletier,Chemistry of Alkaloids, Van Nostrand Reinhold Co,2000. Shoppe, Chemistry of the steroids, Butterworthes,1994. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad,2004. M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, Daya Publishing House, Delhi,2005.
Website and e-learning source	ps://www.organic-chemistry.org/ ps://www.studyorgo.com/summary.php ps://www.clutchprep.com/organic-chemistry Outcomes (for Mapping with POs and PSOs)
Students will be all CO1: To understat	ble: nd the basic concepts of biomolecules and natural products. e and assess the different methods of preparation of structurally different

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds. CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	_						
Course	1	PHARMOC	COG	NOSY AN	D P	HYTOCHEM	AISTRY
Paper No.	Elective	V					
Category	Elective	Year	II	Credits	3	Course	P23CH3:B
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lal	• Practice		Total	
hours per week	2	1	-			3	
Prerequisites	Basic kno	wledge of c	hemi	istry			
Objectives of the					l pro	ducts, biologi	cal functions and
course		ological uses			1		
	To develo	op knowledg	ge on	primary a	and s	econdary meta	abolites and their
	sources.						
				epts of isc	olatio	n methods an	nd separation of
		compounds					
						cosides and n	
							pling techniques.
Course Outline			-	-			Herbal drugs:
				-			Source of Drugs:
	-				-		tures. Study of
	-	-					nic acid pathway
		tate pathy	•	•		analysis of	U
							ampling of crude f foreign matter,
							General chemical
	tests.	Asir value.	i ny		ai iii	vestigations-c	Jeneral chemical
		Extraction	Tec	hniques. (Gene	ral methods of	f extraction, types
							oxhlet extraction.
			-				ion, supercritical
		-					tors affecting the
	-	extraction p					C
	UNIT-II	: Drugs coi	ntain	ing Terpe	noid	s and volatile	oils: Terpenoids:
							ation techniques,
	General	properties (Camp	ohor, Men	thol,	Eucalyptol.	Volatile Oils or
							s of Volatile oils,
							ses. Pentacyclic
	-	-	nes;	taraxastero	ol: S	tructure and	pharmacological
	applicatio						
		-		-			nce, function of
							tion, Preliminary
	-		-				nods of structural
		-		-			mical properties,
							perties and uses.
							sides: Basic ring tative analysis.
							diac glycosides-
	Digoxin,						es- Diosgenin,
	0,	-			-		eral methods of
	-		-			-	f quercetin and
	cyanidin					-	rug Molecules:
L	Cyannunn	entoriue.	1110	uiu uiu g	- °	Selected DI	ing molecules.

	Cardiovascular active substances, Cytotoxic compounds, antimicrobial
	compounds, antibiotic compounds, Anti-inflammatory agents. Marine
	toxins.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Gurdeep R Chatwal (2016), Organic chemistry of Natural
Text	products, Volume I&II, 5th edition, Himalaya publishing House.
	2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of
	Natural Products, Revised edition, Narosa Publishers.
Reference Books	1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to
	Modern Techniques of Plant Analysis, 4th edition, Indian reprint,
	Springer.
	2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2
	nd edition, New age international (P) limited, New Delhi.
	Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the Course	COSMETIC CHEMISTRY								
Paper No.	Non-Maj	or Elective	II						
Category	Elective	Year	II	Credits	2	Course	P23CH3E2		
		Semester	III			Code			
Instructional	Lecture	Tutorial	Lal	b Practice		Total			
hours per week	2	1	-		9	3			
Prerequisites		owledge of (1:f-		
Objectives of the						nistry in day- to and artificial.	- day me.		
course						ic information i	regarding		
		ciples of cosi		-			0 0		
Course Outline		•				sification of			
	-			0 0		ity and wellne			
					nsers	, powders, 1	noisturizers, sun		
	screen, ac	ene and anti-	agin	g creams.					
	UNIT-II: Perfumes: Natural Perfumes –components of perfume – vehicle – characteristics of good vehicle - fixatives and its types, odoriferous compounds, essential oils - Artificial Perfumes - Composition and preparation of rose and jasmine perfumes.								
	antidandru constituen – cold crea Lotions – s UNIT-IV bathing so	ff shampoos ts – dye remo am – cleansin sun screen lo : Soaps: Cle ap – TFM of	A Ha ovals ag mil tions eansir bathi	ir cream – Skin Care I Ik – moistur – constituer ng action or ng soap.	- com Produ rizers nts. f soaj	position – ha ct Skin cleanse – hand and boo p –ingredients	and preparation of		
		peels and y, bath salts,					devices, Electro-		
	UNIT-V: Colour Cosmetics: Lipstick – constitutions – manufacturing method – lip glosses – nail polish – formulation – manufacture – face powder – constitution. Dental Product: Oral care product – product categories – toothpaste – toothpowder – oral rinses – mouth washes.								
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	examinati to be solv	ions UPSC /	TRE	3 / NET/ U	GC-		npetitive 2 /TNPSC others		

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ramesh Kumari, Chemistry of Cosmetics, Prestige Publishers, 2018.
Text	2. R. K. Nema, Textbook of Cosmetics, CBS, Publisher, 2017.
Reference Books	1. M. Vimaladevi, Textbook of Cosmetic, CBS Publisher, 2019.
	2. Heather A. E. Benson, Michael S. Roberts, Vania Rodrigues Leite-Silva,
	Kenneth
	Walters, Cosmetic Formulation: Principles and Practice, CRC Press Publisher,
	2021.
Course Learning (Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To acquire basic knowledge About cosmetics

CO2: To Choose cosmetics upon checking harmless chemical ingredients from various products

CO3: To Judiciously use cosmetics and other related chemicals

CO4: To Learn the idea about colour cosmetics

CO5: To Learn the preparation of dental product and bath product

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	М	М	М	S	S	М	М
CO 2	S	S	S	М	М	S	S	S	М	М
CO 3	S	S	S	М	М	S	S	S	М	М
CO 4	S	S	S	М	М	S	S	S	М	М
CO 5	S	S	S	М	М	S	S	S	М	М

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	Internship / Industrial Activity									
Paper No.	Internsh	ір								
Category	Elective	Year	II Credits 2			Course	P23CH3I1			
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lat	Practice		Total				
hours per week										
Prerequisites										
Objectives of the course	To acquir	To acquire knowledge about Industrial Processes and Chemometrics								
Course Outline	1. Indust	rial Process	ses							
	2 Chemometrics and quality control in Industry									
Skills acquired from this course				•		ability, Profe on and Transf				
Recommended	1. H.A.S	trobel, Che	mical	Instrume	ntatio	on: A System	atic			
Text	approa	ich, 2 nd Edit	ion (1973)Add	ition	Wesley, Rea	ding,			
	Mass					-	-			
	2. R.L.Pe	ecsok, L.D. S	Shield	ls, T.Cavi	ns an	d L.C.Mcwil	liam,			
		ition (1976),					,			
			-	-		rations, 1 st Ed	lition (1963).			
		aw Hill, Nev				,	(),			
	1. G.D.Christian, Analytical chemistry, 5 th edition (1994), John Wiley & Sons New York									
Reference Books	1. G.D.C	hristian, Ana	alytic	al chemist	ry, 5	^{on} edition (19)	94), John Wiley & Sons, New Yorl			

Title of the			DDI		0111			
Course		COO	ORDI	NATION	CHI	EMISTRY –	11	
Paper No.	Core VII							
Category	Core	Year	II	Credits	5	Course	P23CH407	
		Semester	IV			Code		
Instructional	Lecture	Tutorial	Lat	Practice		Total		
hours per week	5	1	-			6		
Prerequisites	Basic kno	wledge of i	norga	anic chemi	stry	•		
Objectives of the						ots and struc	ctural aspects of	
course		etallic comp			-		-	
	To learn	reactions of	of or	ganometal	lic c	ompounds ar	nd their catalytic	
	behaviou	ſ.						
		• •	et the	e structure	of c	oordination	compounds using	
	-	opic tools.						
							on complexes.	
		-				selected con	*	
Course Outline		•		0		-	Classification of	
							d 16 electron rule;	
			-				g in metal – olefin	
	1	` 1			-	•	e and metal-allyl	
	-	•	-	•		-	kamples and MO	
	approach to bonding in metallocenes; fluxional isomerism. Metal –							
	carbonyl complexes: MO diagram of CO; Structure and bonding –							
	bonding modes, MO approach of M-CO bonding, π -acceptor nature of carbonyl group, synergistic effect (stabilization of lower oxidation states							
	-		-				high nuclearity	
							leton electron pair	
	-	Wade's rule		nes oused	onp	signearar site	leton election pui	
				l catalysi	s of	organometa	llic compounds:	
							ddition, reductive	
							tion reaction and	
		· ·		,			genation of olefins	
	(Wilkinso	on's catalys	t), h	ydroformy	latio	n of olefins	using cobalt or	
	rhodium	catalysts (or	xo pr	ocess), ox	idatio	on of olefin (Wacker process),	
	olefin iso	merisation,	wate	er gas shif	t read	ction, cyclo-o	oligomerisation of	
				•		onto process.		
		0	-	-	•	1	scopy: Effect of	
							rbonato, sulphito,	
	1 '	· •	,	•			complexes; IR	
	+	1.	•	-		-	py-Introduction,	
						-	opy in structural	
			-	-		xional moleci	ules, quadrupolar	
		fect in NMF				τ. ι.		
							terminologies: g	
							ffecting g and A;	
							one and more than	
	-		-			• • • •	rfine splitting and $\mathbf{D}_{\mathbf{r}} = \mathbf{C}_{\mathbf{r}}(\mathbf{H}) \mathbf{N}_{\mathbf{r}}^{\dagger}(\mathbf{H})$	
				1	. , .		I), $Co(II)$, $Ni(II)$,	
		mpiexes, t	ns(sa	ncylalaim	ine)c	opper(II) and	d [(NH ₃) ₅ Co-O ₂ -	

	Co(NH ₃) ₅] ⁵⁺ Mossbauer spectroscopy – Mossbauer effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole
	splitting and magnetic interactions. Applications of Mössbauer spectra
	to Fe and Sn compounds.
	UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine
	structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N_2 , O_2) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H_2O , CO_2 , CH_4 , NH_3) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical
	Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques.
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	 Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976.
	5. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	
Course Learning	Dutcomes (for Mapping with POs and PSOs)
0	
Students will be able	e:
CO1: Understand an	ad apply 18 and 16 electron rule for organometallic compounds
	e structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl
containing organom	
00	he reactions of organomatellic compounds and apply them in COA:

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the			NTT 76				
Course		1		SICAL CI	HEN	IISTRY-II	
Paper No.	Core V	Ш					
Category	Core	Year	II	Credits	5	Course	P23CH408
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	5	1	-			6	
Prerequisites	Basic kno	wledge of p	hysio	cal chemis	stry		
Objectives of the			<u> </u>			cs of wave fu	nctions and need
course		antum mec					
	-				n meo	chanical mode	els of particle in a
		l rotor and h		-			1
	-					hvdrogen an	d polyelectronic
	systems.	1				J	I J
		arize the sy	nmet	ry in mole	cule	s and predict t	he point groups.
		•		•		-	g he concepts of
	group the			,			8
Course Outline			le du	ality. Unc	ertai	nty principle.	Particle wave and
		1				v 1 1 '	of wave function.
		- 1		,		' L L	nal, orthonormal,
	-					-	es of operators.
	-	-					ion, photoelectric
							ics, Postulates of
							e independent and
	time depe		Sem	ounger w	uvec	quation, Thie	
	time depe	indent					
	LINIT_II	Quantum	mod	els. Partic	le in	$a hox_1 D two$	dimensional and
		-					near conjugated
			-	•			nonic Oscillator-
		•	-		-	•	constant and its
	-					•	n, calculation of
	U	U		-		iatomic molec	
	Totational	constants a	nu oc	nu iengin	01 u		uics.
	LINIT_II	· Annlicat	ions	to Hydr	2000	and Poly	electron atoms:
				•	0	v	vave equation and
							tation of radial
							ion methods: trial
				-			article in 1D box.
				-			
				-	-		ck self-consistent -Sham equation,
		,					1 /
			л 8]	pm, paun	is ex	ciusion princ	ciple and Slater
	determina		haar	Crown	·1		matery alamants
		_	-	-			metry elements,
	-						point groups- C_n ,
						-	n and classes of
		-					direct product
	-				-	-	– irreducible
	-				a, cor	nstruction of cl	haracter table for
	$C_{2v}, C_{2h},$	C_{3v} and D_{2h}	point	groups.			

	
	UNIT-V: Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system:Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition.
Reference Books	 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.

Website and	1. https://nptel.ac.in/courses/104101124						
e-learning source	2. <u>https://ipc.iisc.ac.in/~kls/teaching.html</u>						
Course Learning C	outcomes (for Mapping with POs and PSOs)						
Students will be able							
CO1: To discuss the characteristics of wave functions and symmetry functions.							
CO2: To classify the	e symmetry operation and wave equations.						
CO3: To apply the o	concept of quantum mechanics and group theory to predict the electronic						
structure.							
CO4: To specify the	appropriate irreducible representations for theoretical applications.						
CO5: To develop sk	ills in evaluating the energies of molecular spectra.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3	– Strong,	2 –	Medium,	1	-	Low
---	-----------	-----	---------	---	---	-----

Title of the Course			Core	Project w	vith	Viva Voce					
Paper No.	Core Pro	oject									
Category	Core	Year	II	Credits	7	Course	P23CH4PJ				
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lal	o Practice		Total					
hours per week		1	7			8					
Prerequisites											
Objectives of the		o identify the									
course		o understand				e adopted					
	• To	o learn the int	terpre	tation of da	ita.						
Course Outline	COMP	ONENTS E			FX						
	COMP	COMPONENTS FOR INTERNAL EVALUATION									
		reparation of	-				- 20 marks				
		novation in c		.			- 20 marks				
		kills in system			d reco	ording.	- 20 marks				
		egularity and	1nvo	lvement			- 20 marks				
	• \	Viva – Voce					- 20 marks				
Skills acquired	Knowled	ge, Problem	solv	ing, Analy	tical	ability, Profe	ssional				
from this course						on and Transfe					
Course Learning	_										
Students will be ab			C								
CO1: Choose a defin	nite problem	related to cha	alleng	ges in the re	al wo	orld by selectin	g the right				
literature sour		. .		•							
CO2: Scheme out th IPR norms	e methodolo	gy to analyze	the p	problem by	follo	wing ethical va	lues abiding by				
CO3: Develop new l	knowledge a	nd skills thro	ugh p	rojects, Co	mpile	e and interpret	project findings				
CO4: Suggest novel,					-						
CO5: Present the fin	dings with re	elevant scient	ific 8	k logical ev	idenc	ces.					

CO-PO Mapping (Course Articulation Matr	ix)
--	-----

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	Н	Н	-	М	Н	М	М	М	-	Н
CO 2	Н	М	М	Н	Н	Н	М	-	-	Н
CO 3	Η	Н	Н	Н	Н	Н	-	М	Н	Н
CO 4	-	-	Н	L	L	Н	-	Н	Н	Н
CO 5	Н	Н	Н	Н	Н	М	М	М	М	Н

^{3 –} Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the	Computational Chemistry Practical										
Course		COL	nput		Ieiiii		1				
Paper No.	Elective	VI									
Category	Core	Year	II	Credits 3		Course	P23CH4:P				
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week		1	3			4					
Prerequisites	Basic Kn	owledge in	Geon	netry of M	oleci	ules					
Objectives of the	1. To mal	ke use of the	e vari	ous softwa	are p	ackages for pe	erforming				
course		ions in chen									
	2. To der	ive chemica	l info	rmation re	eleva	nt to drug des	ign and				
		r modelling.									
Course Outline	UNIT-I:	EXPERIM	ENT	'S:							
	1 Calcula	tion of ADM	FT n	operties of	some	- druge using F	DruLiTo (Drug				
	likeliness		Li pi	operates of	30110	c alugs using L	nuLII0 (Diug				
		•	polog	ical and mo	olecu	lar parameters	from chemdraw				
	and Chem		r0			F					
	3. Use mat	thematica and	d onli	ne equatior	edit	ors to type the	given derivation.				
	(At least ty	wo pages)		-			-				
					form	ation from onl	ine data bases				
		, NCI, PDB, C									
			ound c	collection d	ata ba	ases (zinc.dock	ing.org,				
	molinspira		. 1	1		·					
	using HBA		n bon	ding intera	ction	in the given no	ost guest molecules				
	U U		of the	given set o	f dat	a (MS-Excel)					
		g: Small mole									
		a) Calculation									
		b) Effect of				activity					
		c) Drawing (QSAR	R plot based	l on t	he QSAR resul					
	10. Molec	ular visualiza	tion a	and intercor	ivers	ion using Hg-N	Aercury, JMOL,				
	chemissian										
	11. Predic	tion of UV-S	pectra	a of the giv	en m	olecules using	Argus Lab.				
01.111 1 1	77 1 1	6.0		1.5	•						
Skills acquired		-			•		Visualization of				
from this course		· · · ·		•		al Competenc	y, Professional				
D		ication and '				10 0 1					
Recommended			olecul	lar Modelin	g and	l Drug Design'	' MJP Publishers,				
Text	Chennai, 2		utora	in Chamiat	., ,,, т	oto MaCrow II	ill Now Dalhi				
	2. K.V. Ra 1993.	iman Comp	uters	m Unemisti	y I	ata MCOTAW H	ill, New Delhi,				
	1775.										
Reference Books	1. Kishor	e Arora "Co	mnute	er Applicati	one i	n Chemistry", J	Anmol				
NCICI CHUC DUUKS		ns, New Dell			0113 1	n chemistry,					
					leling	g Principles & A	Applications",				
		lall, 2 nd Editi			2	, <u>r</u>	,				

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Build given chemical structures and also make use of structures from the databases.

CO2: Examine the given chemistry problem using appropriate computational tools.

CO3: Determine different experimental quantities (UV spectra, Adsorption and Toxicity value) using computational chemistry software such as DruLiTo, Chemdraw and Argus Lab.

CO4: Analyze chemical structures using software such as Mercury and JMOL and develop knowledge on biology and mathematical concepts involved in QSAR, PDB search, and Regression analysis.

CO5: Do docking studies and understand the basics of drug design.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	Н	Н	М	L	L	Н	-	-	-	М
CO 2	-	-	L	Н	М	-	-	-	-	L
CO 3	-	-	L	М	М	Н	-	-	-	-
CO 4	-	М	М	Н	М	Н	-	-	-	L
CO 5	-	Н	L	Н	М	Н	-	-	-	-

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 -	- Strong,	2 – Mediu	m, 1 - Low
-----	-----------	-----------	------------

Title of the		D				DN 7	
Course	POLYMER CHEMISTRY						
Paper No.	Elective V	[
Category	Core	Year	II	Credits	3	Course	P23CH4:B
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice	•	Total	
hours per week	3	1	-			4	
Prerequisites	Basic know	ledge of gene	ral ch	emistry			
Objectives of		e basic concep			poly	mers.	
the course		various types					netics.
	To underst	and the impor	rtance	of industri	al po	lymers and	their synthetic
	uses.						
	To determi	ne the molecu	lar we	ight of poly	mers	•	
	To predict	the degradatio	n of p	olymers and	d con	ductivities.	
Course Outline					0		etermination:
							hesive energy,
							Tg, molecular
		•					of polymers:
		-			-		molecular mass
	· / I	•	cular	weight dete	ermin	ation of hig	h polymers by
	physical an			• .• • • •		•	
					-		Chain growth
							ization, Stereo
							kinetics. Step
		ymerization, E	_				
							Degradation:
				-			and gas phase
		• •		• •			l degradation, , Solid and gas
	phase poly		JIIOLOG	uegrauation,	FIIO	to stabilizers	, sona ana gas
			lymo	re. Dranara	tion	of fibra forr	ning polymers
	UNIT-IV: Industrial Polymers: Preparation of fibre forming polymers, elastomeric material. Thermoplastics: Polyethylene, Polypropylene,						
				-	-	•	oly tetrafluoro
	ethylene,	• •		•	•	setting Pla	•
	· ·	•				-	
	formaldehyde and expoxide resin. Elastomers: Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene. Conducting Polymers: Elementar ideas; examples: poly sulphur nitriles, polyphenylene, poly pyrrole and pol						•
							•
	acetylene.		-	hacrylate,		olyimides,	polyamides,
	•	nes, polyureas,		•	-	•	1 •
				-			ditives: Fillers,
	Plasticizers	, antioxidant	ts, tł	nermal stal	oilize	rs, fire re	etardants and
							g, compression
	0.	0	-			0	nforcing. Film
	-	Thermofoamir	-	-	Cata	•	catalysts –
							basic catalyst,
		st catalysis,	vanad	lium, heter	ogene	eous catalys	sis and active
	centres.						
Extended	Questions 1	elated to the a	bove	topics, from	vario	ous competi	tive

Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.
Text	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International
	(Pvt) Limited, 1996.
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &
	Company, New Delhi, 2004.
Reference	1. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience,
Books	1971.
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and
	Engineering, Tata McGraw-Hill, 1978.
Course Learning	g Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

Title of the Course	Course Training for Competitive Examination (UGC-CSIR NET/ SET/ GATE/ TRB)								
Paper No.	SEC								
Category	Professional Competency	Year	П	Credit	2	Course	P23CH4S1		
	Skill Enhancement	Semester	IV	Cruit	Z	Code	125011451		
Instructional	Lecture	Tutorial	Lab	Practice	Total				
hours per week	-	4	-		4				
Prerequisites	Basic and Adva	anced level (Organ	ic, Inorga	nic and Ph	ysical Cher	nistry		
Objectives of the course Course outline	To apply the concepts in solving problems. To revisit advanced level topics by solving model questions and previous year problems from different competitive examination To review important expressions, equations, reactions and diagrams from Physical, inorganic and organic chemistry by solving questions from competitive examinations.								
	 examinations. Unit-I: Inorganic Chemistry: Chemical periodicity, Structure and bonding, Concepts of acids and bases, Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms. Inner transition elements: Spectral and magnetic properties, redox chemistry, analytical applications. Organometallic compounds: synthesis, bonding and structure, and reactivity. Organometallics in homogeneous catalysis. Cages and metal clusters. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine. (Model Questions and Previous Year Questions from UGC CSIR-NET/ GATE/ SET- to be solved for the above topics) Unit-II: Physical Chemistry: Atomic structure and spectroscopy; term symbols. Chemical applications of group theory; symmetry elements; point groups; character tables. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance – Kohlrausch's law and its applications; ionic equilibria; conductometric and potentiometric titrations. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions. Surfaces and Interfaces: Physisorption and chemisorption. Langmuir, Freundlich and Brunauer–Emmett–Teller (BET) isotherms. Surface catalysis: Langmuir- Hinshelwood mechanism. Surfacetension, viscosity. Self-assembly. Physical chemistry of colloids, micelles and macromolecules. (Model Questions and Previous Year Questions from UGC CSIR-NET/ GATE/ SET- to be solved for the above topics) Unit-III: Organic Chemistry: Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds. Aromaticity: Benzenoid and non-benzenoid compounds – generation and react								

Skills acquired	transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective transformations. Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; Pericyclic reactions – electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted reactions. Principles and applications of photochemical reactions in organic chemistry. Carbohydrates, proteins and peptides. (Model Questions and Previous Year Questions from UGC CSIR-NET/ GATE/ SET- to be solved for the above topics) Unit-IV Molecular, Inorganic and Organic Spectroscopy: Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR. Structure determination of organic compounds by IR, UV-Vis, ¹ H & ¹³ C-NMR and Mass spectroscopic techniques. (Model Questions and Previous Year Questions from UGC CSIR-NET/ GATE/ SET- to be solved for the above topics) Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
from this	
course	
Recommend ed Text	Inorganic Chemistry 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry –
	 Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 3. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. 4. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977. 5. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. Physical Chemistry F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
	 Organic Chemistry: 1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata McGraw-Hill, New York, 2003. 2. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and sons, 2007. 3. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition, 2016.

Website and	 4. W. Caruthers, Some Modern Methods of Organic Synthesis 4thedn, Cambridge University Press, Cambridge, 2007. 5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Reactions, New Age International Publishers, New Delhi, 2012.
e-learning	1. <u>https://www.classcentral.com/classroom/youtube-pericyclic-reactions-</u>
Source	for-csir-net-gate-and-iit-jam-54081/611af9983ac3a
Source	2. <u>https://gate.nptel.ac.in/</u>
	Course Learning Outcomes (for Mapping with POs and PSOs)
	Students will be able
	CO 1 : To understand the fundamental concepts of various branches of chemistry, including organic chemistry, inorganic chemistry, physical chemistry, and analytical chemistry.
	CO 2: To develop a strong foundation in chemical principles, laws, and theories to solve complex problems encountered in competitive examinations.
	CO 3: To acquire knowledge of advanced topics in chemistry, such as quantum mechanics, spectroscopy, thermodynamics, and chemical kinetics. CO 4: Develop critical thinking and problem-solving skills necessary for solving numerical and conceptual questions encountered in competitive
	exams. CO 5: Acquire familiarity with the format and types of questions typically encountered in the UGC-CSIR NET examination.

Title of the Course	CHEMISTRY FOR ADVANCED RESEARCH STUDIES								
Paper No.	SEC								
Category	Skill Enhancem	Year	II	Credit	2	Course			
	ent Course (SEC 1)	Semester	IV	Creun	2	Code	P23CH4SA		
Instructional	Lecture	Tutorial	Lab	Practice		Tot	al		
hours per week	2			2		4			
Prerequisites	Basics of Resea	urch Tools an	d Tech	iniques	I				
Objectives of the course	To Understand the fundamental principles and concepts of research methodologies. To Familiarize themselves with research tools, software, and technologies commonly used in research. To Apply ethical considerations and guidelines in research. To Communicate research findings through oral presentations and written reports. To Critically evaluate and analyze existing research literature. To Enhance critical thinking, problem-solving, and analytical skills in the context of research.								
Course outline	 Unit-I: Introduction to Research: Definition and importance of research, Research process and steps, Types of research (qualitative, quantitative, mixed-methods), Formulating research questions and objectives Unit-II: Research Ethics: Ethical considerations in research, Informed consent and participant rights, Confidentiality and data protection, Institutional review boards and ethical clearance, Plagiarism and intellectual property 								
	 Unit-III: Research Tools and Technologies: Literature review techniques and databases: Scopus database, Citations, and Research Metrics, Bibliographic management software (e.g., EndNote, Mendeley), Research collaboration tools (e.g., Microsoft 365, Google Docs, Dropbox), Data analysis software and tools, Data visualization tools (e.g., Tableau, Excel) Unit-IV: Research Reporting: Structure and components of a research paper, Academic writing style and citation conventions, Presenting research findings effectively, Conference presentations and poster design. 								
	Unit-V: Online tools and software for article writing and Plagiarism Checking: Introduction and usage of online tools: Grammarly, Quill Bot, Chat GPT, Turnitin.								
Skills acquired from this course	Searching research Database, using software and online research tools, Professional Competency, Professional Communication and Transferable skills.								
Recommende d Text	 Research Methodology: A Step-by-Step Guide for Beginners" by Ranjit Kumar, SAGE Publications, 2012. The Literature Review: Six Steps to Success" by Lawrence A. Machi and Brenda T. McEvoy, SAGE Publications, 2018. 								

Reference	1. Research Methodology: Methods and Techniques" by C.R. Kothari, New Age
Books	Internation Publication, 2004
	2. The Craft of Research" by Wayne C. Booth, Gregory G. Colomb, and Joseph M. Williams (University of Chicago Press, 2008).
Website and	1.
e-learning	https://merlot.org/merlot/materials.htm?keywords=research+methodology&sort.prop
source	erty=relevance
	2. https://archive.nptel.ac.in/courses/127/106/127106227/
	Course Learning Outcomes (for Mapping with POs and PSOs)
	Students will be able
	CO 1: To understand the fundamental principles and concepts of research methodologies.
	CO 2: To apply ethical considerations and guidelines in research.
	CO 3: To use different online research tools and software for citation and
	collaborative work.
	CO 4: To report research findings as article and poster presentation
	CO 5: To use online tools and software for effective report writing